Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 327:cde56f704eac
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 05 Jul 2020 04:09:00 +0900 |
parents | feeba7fd499a |
children | 72f3e3b44c27 |
files | OD.agda |
diffstat | 1 files changed, 2 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/OD.agda Sun Jul 05 03:45:41 2020 +0900 +++ b/OD.agda Sun Jul 05 04:09:00 2020 +0900 @@ -329,10 +329,8 @@ lemma2 y lt not = not (od→ord (u x)) record { proj1 = case1 refl ; proj2 = subst (λ k → def (od k) (od→ord y) ) (sym oiso) lt } lemma3 : {x : HOD} → od→ord (u x) o< osuc (od→ord ( Union (u x , (u x , u x)) )) lemma3 {x} = od⊆→o≤ lemma1 - lemma4 : {x : HOD} → od→ord (u x) o< osuc (osuc (od→ord x)) - lemma4 {x} = ordtrans (<odmax (u x , u x) (case2 refl)) - (subst (λ k → k o< osuc (osuc (od→ord x))) (omax≡ _ _ refl) ( -- odmax (u x , u x) o< osuc (osuc (od→ord x)) - osucc {!!} )) -- osuc (od→ord (u x)) o< osuc (osuc (od→ord x)) + lemma6 : {x y : HOD} → y ≡ u x → HOD + lemma6 {x} _ = x lemma : {y : Ordinal} → infinite-d y → y o< next o∅ lemma {y} = TransFinite {λ x → infinite-d x → x o< next o∅ } ind y where ind : (x : Ordinal) → ((z : Ordinal) → z o< x → infinite-d z → z o< (next o∅)) →