Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 482:ce4f3f180b8e
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 06 Apr 2022 07:57:37 +0900 |
parents | 263d2d1a000e |
children | ed29002a02b6 |
files | src/Topology.agda src/filter.agda src/zorn.agda |
diffstat | 3 files changed, 44 insertions(+), 42 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Topology.agda Sun Apr 03 18:51:58 2022 +0900 +++ b/src/Topology.agda Wed Apr 06 07:57:37 2022 +0900 @@ -32,14 +32,14 @@ open import filter -record Toplogy ( L : HOD ) : Set (suc n) where +record Topology ( L : HOD ) : Set (suc n) where field OS : HOD OS⊆PL : OS ⊆ Power L o∪ : { P : HOD } → P ⊆ OS → OS ∋ Union P o∩ : { p q : HOD } → OS ∋ p → OS ∋ q → OS ∋ (p ∩ q) -open Toplogy +open Topology record _covers_ ( P q : HOD ) : Set (suc n) where field @@ -58,7 +58,7 @@ -- Limit point -record LP ( L S x : HOD ) (top : Toplogy L) (S⊆PL : S ⊆ Power L ) ( S∋x : S ∋ x ) : Set (suc n) where +record LP ( L S x : HOD ) (top : Topology L) (S⊆PL : S ⊆ Power L ) ( S∋x : S ∋ x ) : Set (suc n) where field neip : {y : HOD} → OS top ∋ y → y ∋ x → HOD isNeip : {y : HOD} → (o∋y : OS top ∋ y ) → (y∋x : y ∋ x ) → ¬ ( x ≡ neip o∋y y∋x) ∧ ( y ∋ neip o∋y y∋x ) @@ -88,16 +88,16 @@ -- FIP is Compact -FIP→Compact : {L P : HOD} → Tolopogy L → FIP L P → Compact L P -FIP→Compact = ? +FIP→Compact : {L P : HOD} → Topology L → FIP L P → Compact L P +FIP→Compact = {!!} -Compact→FIP : {L P : HOD} → Tolopogy L → Compact L P → FIP L P -Compact→FIP = ? +Compact→FIP : {L P : HOD} → Topology L → Compact L P → FIP L P +Compact→FIP = {!!} -- Product Topology -_Top⊗_ : {P Q : HOD} → Topology P → Tolopogy Q → Topology ( P ⊗ Q ) -_Top⊗_ = ? +_Top⊗_ : {P Q : HOD} → Topology P → Topology Q → Topology {!!} +_Top⊗_ = {!!} -- existence of Ultra Filter
--- a/src/filter.agda Sun Apr 03 18:51:58 2022 +0900 +++ b/src/filter.agda Wed Apr 06 07:57:37 2022 +0900 @@ -231,26 +231,17 @@ open import zorn +-- MaximumSubset' : {L P : HOD} +-- → o∅ o< & L → o∅ o< & P → P ⊆ L +-- → PartialOrderSet O P (_⊆'_ O) +-- → ( (B : HOD) → B ⊆ P → TotalOrderSet O B (_⊆'_ O) → SUP O P B (_⊆'_ O) ) +-- → Maximal O P (_⊆'_ O) +-- MaximumSubset' {L} {P} 0<L 0<P P⊆L PO SP = Zorn-lemma O {P} {_⊆'_ O } 0<P PO SP + MaximumFilterExist : {L P : HOD} (LP : L ⊆ Power P) → ({p : HOD} → L ∋ p → L ∋ ( P \ p)) → ({p q : HOD} → L ∋ p → L ∋ q → L ∋ (p ∩ q)) → (F : Filter LP) → o∅ o< & L → o∅ o< & (filter F) → (¬ (filter F ∋ od∅)) → MaximumFilter LP -MaximumFilterExist {L} {P} LP NEG CAP F 0<L 0<F Fprop = record { mf = {!!} ; proper = {!!} ; is-maximum = {!!} } where - _⊆'_ : ( A B : HOD ) → Set n - _⊆'_ A B = (x : Ordinal ) → odef A x → odef B x - FL : HOD - FL = {!!} - 0<FL : o∅ o< & FL - 0<FL = {!!} - PO : PartialOrderSet O FL _⊆'_ - PO = {!!} - supP : (B : HOD) → B ⊆ FL → TotalOrderSet O B _⊆'_ → SUP O FL B _⊆'_ - supP B B⊆FL cmp = record { sup = sup ; A∋maximal = A∋maximal ; x≤sup = x≤sup } where - sup : HOD - sup = {!!} - A∋maximal : B ∋ sup - A∋maximal = {!!} - x≤sup : {x : HOD} → B ∋ x → (x ≡ sup ) ∨ (x ⊆' sup ) - x≤sup = {!!} - maximum : Maximal O FL _⊆'_ - maximum = Zorn-lemma O {FL} {_⊆'_} 0<FL {!!} {!!} +MaximumFilterExist {L} {P} LP NEG CAP F 0<L 0<F Fprop = {!!} where + mf01 : Maximal O P (_⊆'_ O) + mf01 = MaximumSubset O 0<L {!!} {!!} {!!} {!!}
--- a/src/zorn.agda Sun Apr 03 18:51:58 2022 +0900 +++ b/src/zorn.agda Wed Apr 06 07:57:37 2022 +0900 @@ -92,13 +92,15 @@ isSomeA : A ∋ someA isSomeA = ODC.x∋minimal O A (λ eq → ¬x<0 ( subst (λ k → o∅ o< k ) (=od∅→≡o∅ eq) 0<A )) HasMaximal : HOD - HasMaximal = record { od = record { def = λ x → (m : Ordinal) → odef A m → odef A x ∧ (¬ (* x < * m))} ; odmax = & A ; <odmax = {!!} } where - z07 : {y : Ordinal} → ((m : Ordinal) → odef A y ∧ odef A m ∧ (¬ (* y < * m))) → y o< & A - z07 {y} p = subst (λ k → k o< & A) &iso ( c<→o< (subst (λ k → odef A k ) (sym &iso ) (proj1 (p (& someA)) ))) - no-maximum : HasMaximal =h= od∅ → (x : Ordinal) → ((m : Ordinal) → odef A m → odef A x ∧ (¬ (* x < * m) )) → ⊥ - no-maximum nomx x P = ¬x<0 (eq→ nomx {x} (λ m am → P m am )) + HasMaximal = record { od = record { def = λ y → odef A y ∧ ((m : Ordinal) → odef A m → ¬ (* y < * m))} ; odmax = & A ; <odmax = z08 } where + z08 : {y : Ordinal} → (odef A y ∧ ((m : Ordinal) → odef A m → ¬ (* y < * m))) → y o< & A + z08 {y} P = subst (λ k → k o< & A) &iso (c<→o< {* y} (subst (λ k → odef A k) (sym &iso) (proj1 P))) + no-maximal : HasMaximal =h= od∅ → (y : Ordinal) → (odef A y ∧ ((m : Ordinal) → odef A m → ¬ (* y < * m))) → ⊥ + no-maximal nomx y P = ¬x<0 (eq→ nomx {y} ⟪ proj1 P , (λ m am → (proj2 P) m am ) ⟫ ) Gtx : { x : HOD} → A ∋ x → HOD - Gtx {x} ax = record { od = record { def = λ y → odef A y ∧ (x < (* y)) } ; odmax = & A ; <odmax = {!!} } + Gtx {x} ax = record { od = record { def = λ y → odef A y ∧ (x < (* y)) } ; odmax = & A ; <odmax = z09 } where + z09 : {y : Ordinal} → (odef A y ∧ (x < (* y))) → y o< & A + z09 {y} P = subst (λ k → k o< & A) &iso (c<→o< {* y} (subst (λ k → odef A k) (sym &iso) (proj1 P))) z01 : {a b : HOD} → A ∋ a → A ∋ b → (a ≡ b ) ∨ (a < b ) → b < a → ⊥ z01 {a} {b} A∋a A∋b (case1 a=b) b<a = proj1 (proj2 (PO (me A∋b) (me A∋a)) (sym a=b)) b<a z01 {a} {b} A∋a A∋b (case2 a<b) b<a = proj1 (PO (me A∋b) (me A∋a)) b<a ⟪ a<b , (λ b=a → proj1 (proj2 (PO (me A∋b) (me A∋a)) b=a ) b<a ) ⟫ @@ -132,9 +134,9 @@ zc1 = prev px (subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc) z06 : ZChain A x _<_ z06 with is-o∅ (& (Gtx ax)) - ... | yes nogt = ⊥-elim (no-maximum nomx x x-is-maximal ) where -- no larger element, so it is maximal - x-is-maximal : (m : Ordinal) → odef A m → odef A x ∧ (¬ (* x < * m)) - x-is-maximal m am = ⟪ subst (λ k → odef A k) &iso ax , ¬x<m ⟫ where + ... | yes nogt = ⊥-elim (no-maximal nomx x ⟪ subst (λ k → odef A k) &iso ax , x-is-maximal ⟫ ) where -- no larger element, so it is maximal + x-is-maximal : (m : Ordinal) → odef A m → ¬ (* x < * m) + x-is-maximal m am = ¬x<m where ¬x<m : ¬ (* x < * m) ¬x<m x<m = ∅< {Gtx ax} {* m} ⟪ subst (λ k → odef A k) (sym &iso) am , subst (λ k → * x < k ) (cong (*) (sym &iso)) x<m ⟫ (≡o∅→=od∅ nogt) ... | no not = record { B = Bx -- we have larger element, let's create ZChain @@ -177,9 +179,9 @@ B : HOD -- Union (previous B) B = record { od = record { def = λ y → (y o< x) ∧ ((y<x : y o< x ) → odef (ZChain.B (prev y y<x)) y) } ; odmax = & A ; <odmax = {!!} } ... | yes ax with is-o∅ (& (Gtx ax)) - ... | yes nogt = ⊥-elim (no-maximum nomx x x-is-maximal ) where -- no larger element, so it is maximal - x-is-maximal : (m : Ordinal) → odef A m → odef A x ∧ (¬ (* x < * m)) - x-is-maximal m am = ⟪ subst (λ k → odef A k) &iso ax , ¬x<m ⟫ where + ... | yes nogt = ⊥-elim (no-maximal nomx x ⟪ subst (λ k → odef A k) &iso ax , x-is-maximal ⟫ ) where -- no larger element, so it is maximal + x-is-maximal : (m : Ordinal) → odef A m → ¬ (* x < * m) + x-is-maximal m am = ¬x<m where ¬x<m : ¬ (* x < * m) ¬x<m x<m = ∅< {Gtx ax} {* m} ⟪ subst (λ k → odef A k) (sym &iso) am , subst (λ k → * x < k ) (cong (*) (sym &iso)) x<m ⟫ (≡o∅→=od∅ nogt) ... | no not = {!!} where @@ -192,12 +194,21 @@ zorn03 : odef HasMaximal ( & ( ODC.minimal O HasMaximal (λ eq → not (=od∅→≡o∅ eq)) ) ) zorn03 = ODC.x∋minimal O HasMaximal (λ eq → not (=od∅→≡o∅ eq)) zorn01 : A ∋ ODC.minimal O HasMaximal (λ eq → not (=od∅→≡o∅ eq)) - zorn01 = proj1 (zorn03 (& someA) isSomeA ) + zorn01 = proj1 zorn03 zorn02 : {x : HOD} → A ∋ x → ¬ (ODC.minimal O HasMaximal (λ eq → not (=od∅→≡o∅ eq)) < x) - zorn02 {x} ax m<x = proj2 (zorn03 (& x) ax) (subst₂ (λ j k → j < k) (sym *iso) (sym *iso) m<x ) + zorn02 {x} ax m<x = ((proj2 zorn03) (& x) ax) (subst₂ (λ j k → j < k) (sym *iso) (sym *iso) m<x ) ... | yes ¬Maximal = ⊥-elim ( ZChain→¬SUP (z (& A) (≡o∅→=od∅ ¬Maximal)) ( supP B (ZChain.B⊆A (z (& A) (≡o∅→=od∅ ¬Maximal))) (ZChain.total (z (& A) (≡o∅→=od∅ ¬Maximal))) )) where -- if we have no maximal, make ZChain, which contradict SUP condition z : (x : Ordinal) → HasMaximal =h= od∅ → ZChain A x _<_ z x nomx = TransFinite (ind nomx) x B = ZChain.B (z (& A) (≡o∅→=od∅ ¬Maximal) ) +_⊆'_ : ( A B : HOD ) → Set n +_⊆'_ A B = (x : Ordinal ) → odef A x → odef B x + +MaximumSubset : {L P : HOD} + → o∅ o< & L → o∅ o< & P → P ⊆ L + → PartialOrderSet P _⊆'_ + → ( (B : HOD) → B ⊆ P → TotalOrderSet B _⊆'_ → SUP P B _⊆'_ ) + → Maximal P (_⊆'_) +MaximumSubset {L} {P} 0<L 0<P P⊆L PO SP = Zorn-lemma {P} {_⊆'_} 0<P PO SP