Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 989:ce713b5db3f3
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 16 Nov 2022 14:11:28 +0900 |
parents | 9a85233384f7 |
children | 9672214d4e13 |
files | src/zorn.agda |
diffstat | 1 files changed, 16 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Mon Nov 14 07:35:18 2022 +0900 +++ b/src/zorn.agda Wed Nov 16 14:11:28 2022 +0900 @@ -696,20 +696,16 @@ zc1 x prev with Oprev-p x ... | yes op = record { is-max = is-max ; order = order } where px = Oprev.oprev op - zc-b<x : {b : Ordinal } → ZChain.supf zc b o< ZChain.supf zc x → b o< osuc px - zc-b<x {b} lt = subst (λ k → b o< k ) (sym (Oprev.oprev=x op)) (ZChain.supf-inject zc lt ) is-max : {a : Ordinal} {b : Ordinal} → odef (UnionCF A f mf ay supf x) a → b o< x → (ab : odef A b) → HasPrev A (UnionCF A f mf ay supf x) f b ∨ IsSUP A (UnionCF A f mf ay supf b) ab → * a < * b → odef (UnionCF A f mf ay supf x) b is-max {a} {b} ua b<x ab P a<b with ODC.or-exclude O P is-max {a} {b} ua b<x ab P a<b | case1 has-prev = is-max-hp x {a} {b} ua ab has-prev a<b - is-max {a} {b} ua b<x ab P a<b | case2 is-sup - = ⟪ ab , ch-is-sup b sb<sx m06 (subst (λ k → FClosure A f k b) (sym m05) (init ab refl)) ⟫ where + is-max {a} {b} ua b<x ab P a<b | case2 is-sup with osuc-≡< (ZChain.supf-mono zc (o<→≤ b<x)) + ... | case2 sb<sx = ⟪ ab , ch-is-sup b sb<sx m06 (subst (λ k → FClosure A f k b) (sym m05) (init ab refl)) ⟫ where b<A : b o< & A b<A = z09 ab - sb<sx : supf b o< supf x - sb<sx = ? m04 : ¬ HasPrev A (UnionCF A f mf ay supf b) f b m04 nhp = proj1 is-sup ( record { ax = HasPrev.ax nhp ; y = HasPrev.y nhp ; ay = chain-mono1 (o<→≤ b<x) (HasPrev.ay nhp) ; x=fy = HasPrev.x=fy nhp } ) @@ -722,6 +718,20 @@ m09 {s} {z} s<b fcz = order b<A s<b fcz m06 : ChainP A f mf ay supf b m06 = record { fcy<sup = m08 ; order = m09 ; supu=u = m05 } + ... | case1 sb=sx = ? where + m09 : IsSUP A (UnionCF A f mf ay (ZChain.supf zc) b) ab + m09 = proj2 is-sup + m04 : ¬ HasPrev A (UnionCF A f mf ay supf b) f b + m04 nhp = proj1 is-sup ( record { ax = HasPrev.ax nhp ; y = HasPrev.y nhp ; ay = + chain-mono1 (o<→≤ b<x) (HasPrev.ay nhp) ; x=fy = HasPrev.x=fy nhp } ) + m05 : ZChain.supf zc b ≡ b + m05 = ZChain.sup=u zc ab (o<→≤ (z09 ab) ) ⟪ record { x≤sup = λ {z} uz → IsSUP.x≤sup (proj2 is-sup) uz } , m04 ⟫ + + m07 : MinSUP A (UnionCF A f mf ay supf (supf x)) -- supf z o< supf ( supf x ) + m07 = ZChain.minsup zc (o<→≤ (z09 (ZChain.asupf zc))) + m08 : MinSUP A (UnionCF A f mf ay supf b) + m08 = ZChain.minsup zc (o<→≤ (z09 ab)) -- supf z o< supf b + ... | no lim = record { is-max = is-max ; order = order } where is-max : {a : Ordinal} {b : Ordinal} → odef (UnionCF A f mf ay supf x) a → b o< x → (ab : odef A b) →