Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 53:d13a10a1723e
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 27 May 2019 16:14:35 +0900 |
parents | a9007b02eaa1 |
children | 33fb8228ace9 |
files | ordinal-definable.agda |
diffstat | 1 files changed, 14 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/ordinal-definable.agda Mon May 27 15:36:03 2019 +0900 +++ b/ordinal-definable.agda Mon May 27 16:14:35 2019 +0900 @@ -228,6 +228,12 @@ is-od∅ {n} x | tri< (case2 ()) ¬b ¬c is-od∅ {n} x | tri> ¬a ¬b c = no ( ∅2 c ) +is-∋ : {n : Level} → ( x y : OD {suc n} ) → Dec ( x ∋ y ) +is-∋ {n} x y with tri-c< x y +is-∋ {n} x y | tri< a ¬b ¬c = no ¬c +is-∋ {n} x y | tri≈ ¬a b ¬c = no ¬c +is-∋ {n} x y | tri> ¬a ¬b c = yes c + open _∧_ ∅9 : {n : Level} → (x : OD {n} ) → ¬ x == od∅ → o∅ o< od→ord x @@ -285,7 +291,7 @@ ; regularity = regularity ; infinity∅ = {!!} ; infinity = {!!} - ; selection = {!!} + ; selection = selection ; replacement = {!!} } where open _∧_ @@ -299,6 +305,8 @@ union→ X x y X∋x x∋y = {!!} where lemma : {z : Ordinal {n} } → def X z → z ≡ od→ord y lemma {z} X∋z = {!!} + selection : {ψ : OD → Set n} (X y : OD) → Select X ψ ∋ y → ψ y + selection = {!!} minord : (x : OD {n} ) → ¬ (x == od∅ )→ Minimumo (od→ord x) minord x not = ominimal (od→ord x) (∅9 x not) minimul : (x : OD {n} ) → ¬ (x == od∅ )→ OD {n} @@ -311,15 +319,12 @@ (x ∋ minimul x not) ∧ (Select (minimul x not) (λ x₁ → (minimul x not ∋ x₁) ∧ (x ∋ x₁)) == od∅) proj1 ( regularity x non ) = minimul<x x non proj2 ( regularity x non ) = reg1 where - reg4 : {y : Ordinal} → (y ≡ od→ord (ord→od (mino (ominimal (od→ord x) (∅5 (od→ord x) (λ eq → non (∅7 eq))))))) ∨ (y ≡ od→ord x) - reg4 {y} = {!!} reg2 : {y : Ordinal} → ( def (minimul x non) y ) → ( def (minimul x non) y → (minimul x non ∋ ord→od y) ∧ (x ∋ ord→od y) ) → ⊥ - reg2 {y} or t with t or - reg2 s t | record { proj1 = proj1 ; proj2 = proj2 } = {!!} - reg0 : {y : Ordinal} → def (Select (minimul x non) (λ z → (minimul x non ∋ z) ∧ (x ∋ z))) y → def od∅ y - reg0 {y} t with (reg2 {y}) {!!} t - reg0 {y} t | () + reg2 = {!!} + reg0 : {y : Ordinal {n}} → Minimumo (od→ord x) → def (Select (minimul x non) (λ z → (minimul x non ∋ z) ∧ (x ∋ z))) y → def od∅ y + reg0 {y} m t with {!!} y (mino (minord x non)) + ... | lt = {!!} reg1 : Select (minimul x non) (λ x₁ → (minimul x non ∋ x₁) ∧ (x ∋ x₁)) == od∅ - reg1 = record { eq→ = reg0 ; eq← = λ () } + reg1 = record { eq→ = reg0 (minord x non) ; eq← = λ () }