Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1231:d20199031218
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 08 Mar 2023 17:36:15 +0900 |
parents | faffe9a4bd0f |
children | 2839815e7b50 |
files | src/Tychonoff.agda |
diffstat | 1 files changed, 15 insertions(+), 13 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Tychonoff.agda Wed Mar 08 15:36:35 2023 +0900 +++ b/src/Tychonoff.agda Wed Mar 08 17:36:15 2023 +0900 @@ -500,19 +500,21 @@ -- FPSet is in Projection ⁻¹ F FPSet⊆F : {x : Ordinal } → odef FPSet x → odef (filter F) (& (ZFP (* x) Q)) - FPSet⊆F {x} record { z = z ; az = az ; x=ψz = x=ψz } = subst (λ k → odef (filter F) k ) ty70 az where - ty70 : z ≡ & (ZFP (* x) Q) - ty70 = subst₂ ( λ j k → j ≡ k ) &iso refl (cong (&) (==→o≡ record { eq→ = ty71 ; eq← = ty74 } ) ) where - ty71 : {y : Ordinal } → odef (* z) y → odef (ZFP (* x) Q) y - ty71 {y} zy = subst (λ k → ZFProduct (* x) Q k ) ty72 ( ab-pair ty73 aq ) where - ty72 : & < * ? , * (zπ2 is-apq) > ≡ y - ty72 = ? - ty73 : odef (* x) ? - ty73 = subst (λ k → odef k ?) (trans (sym *iso) (sym (cong (*) x=ψz))) record {z = ? ; az = ? ; x=ψz = ? } - ty74 : {y : Ordinal } → odef (ZFP (* x) Q) y → odef (* z) y - ty74 {.(& < * _ , * _ >)} (ab-pair {a} {b} xx qy) with subst (λ k → odef k a) (sym (trans (sym *iso) (sym (cong (*) x=ψz)))) xx - ... | record { z = z1 ; az = az1 ; x=ψz = x=ψz1 } = ? - + FPSet⊆F {x} record { z = z ; az = az ; x=ψz = x=ψz } = filter1 F ? (subst (λ k → odef (filter F) k) (sym &iso) az) ty71 where + Rx : HOD + Rx = Replace' (* z) (λ y xy → * (zπ1 (F⊆pxq (subst (odef (filter F)) (sym &iso) az) xy))) + RxQ∋z : * z ⊆ ZFP Rx Q + RxQ∋z {w} zw = subst (λ k → ZFProduct Rx Q k ) ty70 ( ab-pair record { z = w ; az = zw ; x=ψz = refl } (zp2 (f⊆L F az _ zw ) ) ) where + ty70 : & < * (& (* (zπ1 (F⊆pxq (subst (odef (filter F)) (sym &iso) az) (subst (odef (* z)) (sym &iso) zw))))) + , * (zπ2 (f⊆L F az w zw)) > ≡ w + ty70 = ? + ty71 : * z ⊆ ZFP (* x) Q + ty71 = subst (λ k → * z ⊆ ZFP k Q) ty72 RxQ∋z where + ty72 : Rx ≡ * x + ty72 = begin + Rx ≡⟨ sym *iso ⟩ + * (& Rx) ≡⟨ cong (*) (sym x=ψz ) ⟩ + * x ∎ where open ≡-Reasoning -- copy and pasted, sorry --