Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 488:d2d704ab1a33
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 08 Apr 2022 17:36:42 +0900 |
parents | 4fa7c5104b68 |
children | dc7a95dd66c4 |
files | src/zorn.agda |
diffstat | 1 files changed, 25 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Thu Apr 07 19:08:15 2022 +0900 +++ b/src/zorn.agda Fri Apr 08 17:36:42 2022 +0900 @@ -61,7 +61,7 @@ field sup : HOD A∋maximal : A ∋ sup - x≤sup : {x : HOD} → B ∋ x → (x ≡ sup ) ∨ (x < sup ) -- B is Total + x≤sup : {x : HOD} → B ∋ x → (x ≡ sup ) ∨ (x < sup ) -- B is Total, use positive record Maximal ( A : HOD ) (_<_ : (x y : HOD) → Set n ) : Set (suc n) where field @@ -107,23 +107,39 @@ bx : Ordinal bx<y : bx o< y is-fb : x ≡ & (fb bx bx<y ) + bx<A : (z : ZChain A (& A) _<_ ) → {x : Ordinal } → (bx : BX x (& A) ( ZChain.fb z )) → BX.bx bx o< & A + bx<A z {x} bx = BX.bx<y bx B : (z : ZChain A (& A) _<_ ) → HOD B z = record { od = record { def = λ x → BX x (& A) ( ZChain.fb z ) } ; odmax = & A ; <odmax = {!!} } - z11 : (z : ZChain A (& A) _<_ ) → (x : Element (B z)) → elm x ≡ ZChain.fb z (BX.bx (is-elm x)) {!!} + z11 : (z : ZChain A (& A) _<_ ) → (x : Element (B z)) → elm x ≡ ZChain.fb z (BX.bx (is-elm x)) (bx<A z (is-elm x)) z11 z x = subst₂ (λ j k → j ≡ k ) *iso *iso ( cong (*) (BX.is-fb (is-elm x)) ) obx : (z : ZChain A (& A) _<_ ) → {x : HOD} → B z ∋ x → Ordinal obx z {x} bx = BX.bx bx - obx=fb : (z : ZChain A (& A) _<_ ) → {x : HOD} → (bx : B z ∋ x ) → x ≡ ZChain.fb z ( obx z bx ) {!!} + obx=fb : (z : ZChain A (& A) _<_ ) → {x : HOD} → (bx : B z ∋ x ) → x ≡ ZChain.fb z ( obx z bx ) (bx<A z bx ) obx=fb z {x} bx = subst₂ (λ j k → j ≡ k ) *iso *iso (cong (*) (BX.is-fb bx)) + B⊆A : (z : ZChain A (& A) _<_ ) → B z ⊆ A + B⊆A z = record { incl = λ {x} bx → subst (λ k → odef A k ) (sym (BX.is-fb bx)) (ZChain.A∋fb z (BX.bx bx) (BX.bx<y bx) ) } + PO-B : (z : ZChain A (& A) _<_ ) → PartialOrderSet (B z) _<_ + PO-B z a b = PO record { elm = elm a ; is-elm = incl ( B⊆A z) (is-elm a) } record { elm = elm b ; is-elm = incl ( B⊆A z) (is-elm b) } + bx-monotonic : (z : ZChain A (& A) _<_ ) → {x y : Element (B z)} → obx z (is-elm x) o< obx z (is-elm y) → elm x < elm y + bx-monotonic z {x} {y} a = subst₂ (λ j k → j < k ) (sym (z11 z x)) (sym (z11 z y)) (ZChain.monotonic z (bx<A z (is-elm x)) (bx<A z (is-elm y)) a ) + open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) + z12 : (z : ZChain A (& A) _<_ ) → {a b : HOD } → (x : BX (& a) (& A) (ZChain.fb z)) (y : BX (& b) (& A) (ZChain.fb z)) + → obx z x ≡ obx z y → bx<A z x ≅ bx<A z y + z12 z {a} {b} x y eq = {!!} + bx-inject : (z : ZChain A (& A) _<_ ) → {x y : Element (B z)} → BX.bx (is-elm x) ≡ BX.bx (is-elm y) → elm x ≡ elm y + bx-inject z {x} {y} eq = begin + elm x ≡⟨ obx=fb z (is-elm x) ⟩ + ZChain.fb z (obx z (is-elm x)) (bx<A z (is-elm x)) ≡⟨ cong₂ (λ j k → ZChain.fb z j k ) ? ( HE.≅-to-≡ (z12 z ? ? eq) ) ⟩ + ZChain.fb z (obx z (is-elm y)) (bx<A z (is-elm y)) ≡⟨ sym ( obx=fb z (is-elm y) ) ⟩ + elm y ∎ where open ≡-Reasoning B-is-total : (z : ZChain A (& A) _<_ ) → TotalOrderSet (B z) _<_ B-is-total z x y with trio< (obx z (is-elm x)) (obx z (is-elm y)) - ... | tri< a ¬b ¬c = tri< z10 {!!} {!!} where - z10 : elm x < elm y - z10 = subst₂ (λ j k → j < k ) (sym (z11 z x)) (sym (z11 z y)) (ZChain.monotonic z {!!} {!!} a ) + ... | tri< a ¬b ¬c = tri< z10 (λ eq → proj1 (proj2 (PO-B z x y) eq ) z10) (λ ¬c → proj1 (proj1 (PO-B z y x) ¬c ) z10) where + z10 : elm x < elm y + z10 = bx-monotonic z {x} {y} a ... | tri≈ ¬a b ¬c = tri≈ {!!} {!!} {!!} - ... | tri> ¬a ¬b c = tri> {!!} {!!} {!!} - B⊆A : (z : ZChain A (& A) _<_ ) → B z ⊆ A - B⊆A z = record { incl = λ {x} bx → subst (λ k → odef A k ) (sym (BX.is-fb bx)) (ZChain.A∋fb z (BX.bx bx) {!!} ) } + ... | tri> ¬a ¬b c = tri> (λ ¬a → proj1 (proj1 (PO-B z x y) ¬a ) (bx-monotonic z {y} {x} c) ) (λ eq → proj2 (proj2 (PO-B z x y) eq ) (bx-monotonic z {y} {x} c)) (bx-monotonic z {y} {x} c) ZChain→¬SUP : (z : ZChain A (& A) _<_ ) → ¬ (SUP A (B z) _<_ ) ZChain→¬SUP z sp = ⊥-elim {!!} where z03 : & (SUP.sup sp) o< osuc (& A)