Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 93:d382a7902f5e
replacement
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 06 Jun 2019 09:36:41 +0900 |
parents | ef0dfc4b97fd |
children | 4659a815b70d |
files | ordinal-definable.agda |
diffstat | 1 files changed, 8 insertions(+), 12 deletions(-) [+] |
line wrap: on
line diff
--- a/ordinal-definable.agda Wed Jun 05 18:24:40 2019 +0900 +++ b/ordinal-definable.agda Thu Jun 06 09:36:41 2019 +0900 @@ -284,7 +284,7 @@ Union U = record { def = λ y → osuc y o< (od→ord U) } -- power : ∀ X ∃ A ∀ t ( t ∈ A ↔ ( ∀ {x} → t ∋ x → X ∋ x ) Power : OD {suc n} → OD {suc n} - Power X = record { def = λ y → ∀ (x : Ordinal {suc n} ) → ( def X x ∧ def (ord→od y) x ) } + Power X = record { def = λ y → ∀ (x : Ordinal {suc n} ) → def X x → def (ord→od y) x } ZFSet = OD {suc n} _∈_ : ( A B : ZFSet ) → Set (suc n) A ∈ B = B ∋ A @@ -311,9 +311,9 @@ ; minimul = minimul ; regularity = regularity ; infinity∅ = infinity∅ - ; infinity = {!!} + ; infinity = λ _ → infinity ; selection = λ {ψ} {X} {y} → selection {ψ} {X} {y} - ; replacement = {!!} + ; replacement = replacement } where open _∧_ open Minimumo @@ -322,15 +322,11 @@ proj2 (pair A B ) = omax-y {n} (od→ord A) (od→ord B) empty : (x : OD {suc n} ) → ¬ (od∅ ∋ x) empty x () - --- Power X = record { def = λ y → ∀ (x : Ordinal {suc n} ) → ( def X x ∧ def (ord→od y) x ) } + --- Power X = record { def = λ y → ∀ (x : Ordinal {suc n} ) → def X x → def (ord→od y) x } power→ : (A t : OD) → Power A ∋ t → {x : OD} → t ∋ x → A ∋ x - power→ A t P∋t {x} t∋x = proj1 (P∋t (od→ord x) ) + power→ A t P∋t {x} t∋x = {!!} power← : (A t : OD) → ({x : OD} → (t ∋ x → A ∋ x)) → Power A ∋ t - power← A t t→A z = record { proj1 = lemma2 ; proj2 = lemma1 } where - lemma1 : def (ord→od (od→ord t)) z - lemma1 = {!!} - lemma2 : def A z - lemma2 = {!!} + power← A t t→A z = {!!} union-u : (X z : OD {suc n}) → Union X ∋ z → OD {suc n} union-u X z U>z = ord→od ( osuc ( od→ord z ) ) union-lemma-u : {X z : OD {suc n}} → (U>z : Union X ∋ z ) → union-u X z U>z ∋ z @@ -354,6 +350,8 @@ proj1 = λ cond → record { proj1 = proj1 cond ; proj2 = ψiso {ψ} (proj2 cond) (sym oiso) } ; proj2 = λ select → record { proj1 = proj1 select ; proj2 = ψiso {ψ} (proj2 select) oiso } } + replacement : {ψ : OD → OD} (X x : OD) → Replace X ψ ∋ ψ x + replacement {ψ} X x = sup-c< ψ {x} ∅-iso : {x : OD} → ¬ (x == od∅) → ¬ ((ord→od (od→ord x)) == od∅) ∅-iso {x} neq = subst (λ k → ¬ k) (=-iso {n} ) neq minimul : (x : OD {suc n} ) → ¬ (x == od∅ )→ OD {suc n} @@ -410,6 +408,4 @@ lemma record { lv = (Suc lv₁) ; ord = (OSuc .(Suc lv₁) ord₁) } (case1 (s≤s ())) lemma record { lv = 1 ; ord = (Φ 1) } (case2 c2) with d<→lv c2 lemma record { lv = (Suc Zero) ; ord = (Φ .1) } (case2 ()) | refl - replacement : {ψ : OD → OD} (X x : OD) → Replace X ψ ∋ ψ x - replacement {ψ} X x = {!!}