Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 460:d407cc8499fc
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 19 Mar 2022 12:16:48 +0900 |
parents | 3d84389cc43f |
children | 0e018784bed3 |
files | src/generic-filter.agda |
diffstat | 1 files changed, 34 insertions(+), 38 deletions(-) [+] |
line wrap: on
line diff
--- a/src/generic-filter.agda Fri Mar 18 23:45:23 2022 +0900 +++ b/src/generic-filter.agda Sat Mar 19 12:16:48 2022 +0900 @@ -146,59 +146,55 @@ P-GenericFilter : (P L p0 : HOD ) → (LP : L ⊆ Power P) → L ∋ p0 → (C : CountableModel ) → GenericFilter LP P-GenericFilter P L p0 L⊆PP Lp0 C = record { - genf = record { filter = PDHOD L p0 C ; f⊆L = f⊆PL ; filter1 = {!!} ; filter2 = {!!} } - ; generic = {!!} + genf = record { filter = PDHOD L p0 C ; f⊆L = f⊆PL ; filter1 = λ L∋q PD∋p p⊆q → f1 L∋q PD∋p p⊆q ; filter2 = f2 } + ; generic = fdense } where - PGHOD∈PL : (i : Nat) → (x : Ordinal) → PGHOD i L C x ⊆ Power P - PGHOD∈PL i x = record { incl = λ {x} p → {!!} } - Pp0 : p0 ∈ Power P - Pp0 = {!!} f⊆PL : PDHOD L p0 C ⊆ L -- Power P - f⊆PL = record { incl = λ {x} lt → {!!} } -- x∈PP lt } - f1 : {p q : HOD} → q ⊆ P → PDHOD P p0 C ∋ p → p ⊆ q → PDHOD P p0 C ∋ q - f1 {p} {q} q⊆P PD∋p p⊆q = record { gr = gr PD∋p ; pn<gr = f04 ; x∈PP = {!!} } where -- power← _ _ (incl q⊆P) } where - f04 : (y : Ordinal) → odef (* (find-p P C (gr PD∋p) (& p0))) y → odef (* (& q)) y - f04 y lt1 = subst₂ (λ j k → odef j k ) (sym *iso) &iso (incl p⊆q (subst₂ (λ j k → odef k j ) (sym &iso) *iso ( pn<gr PD∋p y lt1 ))) + f⊆PL = record { incl = λ {x} lt → x∈PP lt } + Lq : {q : HOD} → L ∋ q → q ⊆ P + Lq {q} lt = ODC.power→⊆ O P q ( incl L⊆PP lt ) + Pp0 : p0 ∈ Power P + Pp0 = incl L⊆PP Lp0 + PGHOD∈PL : (i : Nat) → (x : Ordinal) → PGHOD i L C x ⊆ Power P + PGHOD∈PL i x = record { incl = λ {x} p → incl L⊆PP (proj1 p) } + f1 : {p q : HOD} → L ∋ q → PDHOD L p0 C ∋ p → p ⊆ q → PDHOD L p0 C ∋ q + f1 {p} {q} L∋q PD∋p p⊆q = record { gr = gr PD∋p ; pn<gr = f04 ; x∈PP = L∋q } where + f04 : (y : Ordinal) → odef (* (find-p L C (gr PD∋p) (& p0))) y → odef (* (& q)) y + f04 y lt1 = subst₂ (λ j k → odef j k ) (sym *iso) &iso (incl p⊆q (subst₂ (λ j k → odef k j ) (sym &iso) *iso ( pn<gr PD∋p y lt1 ))) -- odef (* (find-p P C (gr PD∋p) (& p0))) y → odef (* (& q)) y - f2 : {p q : HOD} → PDHOD P p0 C ∋ p → PDHOD P p0 C ∋ q → PDHOD P p0 C ∋ (p ∩ q) + f2 : {p q : HOD} → PDHOD L p0 C ∋ p → PDHOD L p0 C ∋ q → PDHOD L p0 C ∋ (p ∩ q) f2 {p} {q} PD∋p PD∋q with <-cmp (gr PD∋q) (gr PD∋p) - ... | tri< a ¬b ¬c = record { gr = gr PD∋p ; pn<gr = λ y lt → subst (λ k → odef k y ) (sym *iso) (f3 y lt); x∈PP = {!!} } where - -- ODC.power-∩ O (x∈PP PD∋p) (x∈PP PD∋q) } where - f3 : (y : Ordinal) → odef (* (find-p P C (gr PD∋p) (& p0))) y → odef (p ∩ q) y + ... | tri< a ¬b ¬c = record { gr = gr PD∋p ; pn<gr = λ y lt → subst (λ k → odef k y ) (sym *iso) (f3 y lt ) ; x∈PP = {!!} } where + f3 : (y : Ordinal) → odef (* (find-p L C (gr PD∋p) (& p0))) y → odef (p ∩ q) y f3 y lt = ⟪ subst (λ k → odef k y) *iso (pn<gr PD∋p y lt) , subst (λ k → odef k y) *iso (pn<gr PD∋q y (f5 lt)) ⟫ where - f5 : odef (* (find-p P C (gr PD∋p) (& p0))) y → odef (* (find-p P C (gr PD∋q) (& p0))) y - f5 lt = subst (λ k → odef (* (find-p P C (gr PD∋q) (& p0))) k ) &iso ( incl (p-monotonic P p0 C {gr PD∋q} {gr PD∋p} (<to≤ a)) - (subst (λ k → odef (* (find-p P C (gr PD∋p) (& p0))) k ) (sym &iso) lt) ) - ... | tri≈ ¬a refl ¬c = record { gr = gr PD∋p ; pn<gr = λ y lt → subst (λ k → odef k y ) (sym *iso) (f4 y lt); x∈PP = {!!} } where - -- ODC.power-∩ O (x∈PP PD∋p) (x∈PP PD∋q) } where - f4 : (y : Ordinal) → odef (* (find-p P C (gr PD∋p) (& p0))) y → odef (p ∩ q) y + f5 : odef (* (find-p L C (gr PD∋p) (& p0))) y → odef (* (find-p L C (gr PD∋q) (& p0))) y + f5 lt = subst (λ k → odef (* (find-p L C (gr PD∋q) (& p0))) k ) &iso ( incl (p-monotonic L p0 C {gr PD∋q} {gr PD∋p} (<to≤ a)) + (subst (λ k → odef (* (find-p L C (gr PD∋p) (& p0))) k ) (sym &iso) lt) ) + ... | tri≈ ¬a refl ¬c = record { gr = gr PD∋p ; pn<gr = λ y lt → subst (λ k → odef k y ) (sym *iso) (f4 y lt) ; x∈PP = {!!} } where + f4 : (y : Ordinal) → odef (* (find-p L C (gr PD∋p) (& p0))) y → odef (p ∩ q) y f4 y lt = ⟪ subst (λ k → odef k y) *iso (pn<gr PD∋p y lt) , subst (λ k → odef k y) *iso (pn<gr PD∋q y lt) ⟫ ... | tri> ¬a ¬b c = record { gr = gr PD∋q ; pn<gr = λ y lt → subst (λ k → odef k y ) (sym *iso) (f3 y lt) ; x∈PP = {!!} } where -- - -- ODC.power-∩ O (x∈PP PD∋p) (x∈PP PD∋q) } where - f3 : (y : Ordinal) → odef (* (find-p P C (gr PD∋q) (& p0))) y → odef (p ∩ q) y - f3 y lt = ⟪ subst (λ k → odef k y) *iso (pn<gr PD∋p y (f5 lt)) , subst (λ k → odef k y) *iso (pn<gr PD∋q y lt) ⟫ where - f5 : odef (* (find-p P C (gr PD∋q) (& p0))) y → odef (* (find-p P C (gr PD∋p) (& p0))) y - f5 lt = subst (λ k → odef (* (find-p P C (gr PD∋p) (& p0))) k ) &iso ( incl (p-monotonic P p0 C {gr PD∋p} {gr PD∋q} (<to≤ c)) - (subst (λ k → odef (* (find-p P C (gr PD∋q) (& p0))) k ) (sym &iso) lt) ) - fdense : (D : Dense L⊆PP ) → ¬ (filter.Dense.dense D ∩ PDHOD P p0 C) ≡ od∅ - fdense D eq0 = ⊥-elim ( ∅< {Dense.dense D ∩ PDHOD P p0 C} fd01 (≡od∅→=od∅ eq0 )) where + f3 : (y : Ordinal) → odef (* (find-p L C (gr PD∋q) (& p0))) y → odef (p ∩ q) y + f3 y lt = ⟪ subst (λ k → odef k y) *iso (pn<gr PD∋p y (f5 lt)), subst (λ k → odef k y) *iso (pn<gr PD∋q y lt) ⟫ where + f5 : odef (* (find-p L C (gr PD∋q) (& p0))) y → odef (* (find-p L C (gr PD∋p) (& p0))) y + f5 lt = subst (λ k → odef (* (find-p L C (gr PD∋p) (& p0))) k ) &iso ( incl (p-monotonic L p0 C {gr PD∋p} {gr PD∋q} (<to≤ c)) + (subst (λ k → odef (* (find-p L C (gr PD∋q) (& p0))) k ) (sym &iso) lt) ) + fdense : (D : Dense L⊆PP ) → ¬ (filter.Dense.dense D ∩ PDHOD L p0 C) ≡ od∅ + fdense D eq0 = ⊥-elim ( ∅< {Dense.dense D ∩ PDHOD L p0 C} fd01 (≡od∅→=od∅ eq0 )) where open Dense - p0⊆P : L ∋ p0 - p0⊆P = {!!} fd : HOD - fd = dense-f D p0⊆P + fd = dense-f D Lp0 PP∋D : dense D ⊆ Power P PP∋D = {!!} fd00 : PDHOD P p0 C ∋ p0 fd00 = record { gr = 0 ; pn<gr = λ y lt → lt ; x∈PP = {!!} } - fd02 : dense D ∋ dense-f D {!!} -- p0⊆P - fd02 = dense-d D {!!} - fd04 : dense-f D p0⊆P ⊆ P + fd02 : dense D ∋ dense-f D Lp0 + fd02 = dense-d D Lp0 + fd04 : dense-f D Lp0 ⊆ P fd04 = ODC.power→⊆ O _ _ ( incl PP∋D fd02 ) - fd03 : PDHOD P p0 C ∋ dense-f D p0⊆P + fd03 : PDHOD L p0 C ∋ dense-f D Lp0 fd03 = {!!} - -- f1 {p0} {dense-f D p0⊆P} fd04 fd00 ( dense-p D (ODC.power→⊆ O _ _ Pp0 ) ) - fd01 : (dense D ∩ PDHOD P p0 C) ∋ fd + fd01 : (dense D ∩ PDHOD L p0 C) ∋ fd fd01 = ⟪ fd02 , fd03 ⟫ open GenericFilter