Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 309:d4802179a66f
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 30 Jun 2020 00:17:05 +0900 |
parents | b172ab9f12bc |
children | 73a2a8ec9603 |
files | OD.agda Ordinals.agda |
diffstat | 2 files changed, 14 insertions(+), 15 deletions(-) [+] |
line wrap: on
line diff
--- a/OD.agda Tue Jun 30 00:05:16 2020 +0900 +++ b/OD.agda Tue Jun 30 00:17:05 2020 +0900 @@ -57,15 +57,15 @@ -- HOD = { x | TC x ⊆ OD } -- where TC x is a transitive clusure of x, i.e. Union of all elemnts of all subset of x. -- This is not possible because we don't have V yet. --- We simply assume V=OD here. -- --- We also assumes ODs are isomorphic to Ordinals, which is ususally proved by Goedel number tricks. --- ODs have an ovbious maximum, but Ordinals are not. This means, od→ord is not an on-to mapping. --- --- ==→o≡ is necessary to prove axiom of extensionality. +-- We also assumes HODs are isomorphic to Ordinals, which is ususally proved by Goedel number tricks. +-- ODs have an ovbious maximum, but Ordinals are not. So HOD cannot be a maximum OD. -- -- In classical Set Theory, sup is defined by Uion. Since we are working on constructive logic, -- we need explict assumption on sup. +-- In order to allow sup on od→ord HOD, solutions of a HOD have to have a maximu. +-- +-- ==→o≡ is necessary to prove axiom of extensionality. data One : Set n where OneObj : One @@ -80,14 +80,6 @@ odmax : Ordinal <odmax : {y : Ordinal} → def od y → y o< odmax -record OrdinalSubset (maxordinal : Ordinal) : Set (suc n) where - field - os→ : (x : Ordinal) → x o< maxordinal → Ordinal - os← : Ordinal → Ordinal - os←limit : (x : Ordinal) → os← x o< maxordinal - os-iso← : {x : Ordinal} → os→ (os← x) (os←limit x) ≡ x - os-iso→ : {x : Ordinal} → (lt : x o< maxordinal ) → os← (os→ x lt) ≡ x - open HOD record ODAxiom : Set (suc n) where @@ -99,7 +91,6 @@ oiso : {x : HOD } → ord→od ( od→ord x ) ≡ x diso : {x : Ordinal } → od→ord ( ord→od x ) ≡ x ==→o≡ : { x y : HOD } → (od x == od y) → x ≡ y - -- supermum as Replacement Axiom ( corresponding Ordinal of OD has maximum ) sup-o : (A : HOD) → (( x : Ordinal ) → def (od A) x → Ordinal ) → Ordinal sup-o< : (A : HOD) → { ψ : ( x : Ordinal ) → def (od A) x → Ordinal } → ∀ {x : Ordinal } → (lt : def (od A) x ) → ψ x lt o< sup-o A ψ @@ -282,7 +273,7 @@ Replace : HOD → (HOD → HOD ) → HOD Replace X ψ = record { od = record { def = λ x → (x o< sup-o X {!!} ) ∧ odef (in-codomain X ψ) x } ; odmax = {!!} ; <odmax = {!!} } -- ( λ x → od→ord (ψ x)) _∩_ : ( A B : ZFSet ) → ZFSet - A ∩ B = record { od = record { def = λ x → odef A x ∧ odef B x } ; odmax = {!!} ; <odmax = {!!} } + A ∩ B = record { od = record { def = λ x → odef A x ∧ odef B x } ; odmax = omin (odmax A) (odmax B) ; <odmax = λ y → min1 (<odmax A (proj1 y)) (<odmax B (proj2 y))} Union : HOD → HOD Union U = record { od = record { def = λ x → ¬ (∀ (u : Ordinal ) → ¬ ((odef U u) ∧ (odef (ord→od u) x))) } ; odmax = {!!} ; <odmax = {!!} } _∈_ : ( A B : ZFSet ) → Set n
--- a/Ordinals.agda Tue Jun 30 00:05:16 2020 +0900 +++ b/Ordinals.agda Tue Jun 30 00:17:05 2020 +0900 @@ -200,3 +200,11 @@ → ¬ p FExists {m} {l} ψ {p} P = contra-position ( λ p y ψy → P {y} ψy p ) + record OrdinalSubset (maxordinal : Ordinal) : Set (suc n) where + field + os→ : (x : Ordinal) → x o< maxordinal → Ordinal + os← : Ordinal → Ordinal + os←limit : (x : Ordinal) → os← x o< maxordinal + os-iso← : {x : Ordinal} → os→ (os← x) (os←limit x) ≡ x + os-iso→ : {x : Ordinal} → (lt : x o< maxordinal ) → os← (os→ x lt) ≡ x +