Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 455:d5909d3c725a
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 17 Mar 2022 14:04:25 +0900 |
parents | 0d3d72dba75b |
children | 9207b0c3cfe9 |
files | src/filter.agda src/generic-filter.agda |
diffstat | 2 files changed, 15 insertions(+), 14 deletions(-) [+] |
line wrap: on
line diff
--- a/src/filter.agda Tue Mar 15 15:46:39 2022 +0900 +++ b/src/filter.agda Thu Mar 17 14:04:25 2022 +0900 @@ -126,7 +126,7 @@ d⊆P : dense ⊆ Power P dense-f : {p : HOD} → p ⊆ P → HOD dense-d : { p : HOD} → (lt : p ⊆ P) → dense ∋ dense-f lt - dense-p : { p : HOD} → (lt : p ⊆ P) → p ⊆ (dense-f lt) + dense-p : { p : HOD} → (lt : p ⊆ P) → (dense-f lt) ⊆ p record Ideal ( L : HOD ) : Set (suc n) where field @@ -182,7 +182,7 @@ d⊆P : PL dense dense-f : {p : L} → PL (λ x → p ⊆ x ) → L dense-d : { p : L} → (lt : PL (λ x → p ⊆ x )) → dense ( dense-f lt ) - dense-p : { p : L} → (lt : PL (λ x → p ⊆ x )) → p ⊆ (dense-f lt) + dense-p : { p : L} → (lt : PL (λ x → p ⊆ x )) → (dense-f lt) ⊆ p Dense-is-F : {L : HOD} → (f : Dense L ) → F-Dense HOD (λ p → (x : HOD) → p x → x ⊆ L ) _⊆_ _∩_ Dense-is-F {L} f = record {
--- a/src/generic-filter.agda Tue Mar 15 15:46:39 2022 +0900 +++ b/src/generic-filter.agda Thu Mar 17 14:04:25 2022 +0900 @@ -73,11 +73,11 @@ ---- -- a(n) ∈ M --- ∃ q ∈ Power P → q ∈ a(n) ∧ p(n) ⊆ q +-- ∃ q ∈ Power P → q ∈ a(n) ∧ q ⊆ p(n) -- PGHOD : (i : Nat) (P : HOD) (C : CountableModel ) → (p : Ordinal) → HOD PGHOD i P C p = record { od = record { def = λ x → - odef (Power P) x ∧ odef (* (ctl→ C i)) x ∧ ( (y : Ordinal ) → odef (* p) y → odef (* x) y ) } + odef (Power P) x ∧ odef (* (ctl→ C i)) x ∧ ( (y : Ordinal ) → odef (* x) y → odef (* p) y ) } ; odmax = odmax (Power P) ; <odmax = λ {y} lt → <odmax (Power P) (proj1 lt) } --- @@ -127,7 +127,7 @@ open import nat open _⊆_ -p-monotonic1 : (P p : HOD ) (C : CountableModel ) → {n : Nat} → (* (find-p P C n (& p))) ⊆ (* (find-p P C (Suc n) (& p))) +p-monotonic1 : (P p : HOD ) (C : CountableModel ) → {n : Nat} → (* (find-p P C (Suc n) (& p))) ⊆ (* (find-p P C n (& p))) p-monotonic1 P p C {n} with is-o∅ (& (PGHOD n P C (find-p P C n (& p)))) ... | yes y = refl-⊆ ... | no not = record { incl = λ {x} lt → proj2 (proj2 fmin∈PGHOD) (& x) lt } where @@ -136,11 +136,11 @@ fmin∈PGHOD : PGHOD n P C (find-p P C n (& p)) ∋ fmin fmin∈PGHOD = ODC.x∋minimal O (PGHOD n P C (find-p P C n (& p))) (λ eq → not (=od∅→≡o∅ eq)) -p-monotonic : (P p : HOD ) (C : CountableModel ) → {n m : Nat} → n ≤ m → (* (find-p P C n (& p))) ⊆ (* (find-p P C m (& p))) +p-monotonic : (P p : HOD ) (C : CountableModel ) → {n m : Nat} → n ≤ m → (* (find-p P C m (& p))) ⊆ (* (find-p P C n (& p))) p-monotonic P p C {Zero} {Zero} n≤m = refl-⊆ -p-monotonic P p C {Zero} {Suc m} z≤n = trans-⊆ (p-monotonic P p C {Zero} {m} z≤n ) (p-monotonic1 P p C {m} ) +p-monotonic P p C {Zero} {Suc m} z≤n = trans-⊆ (p-monotonic1 P p C {m} ) (p-monotonic P p C {Zero} {m} z≤n ) p-monotonic P p C {Suc n} {Suc m} (s≤s n≤m) with <-cmp n m -... | tri< a ¬b ¬c = trans-⊆ (p-monotonic P p C {Suc n} {m} a) (p-monotonic1 P p C {m} ) +... | tri< a ¬b ¬c = trans-⊆ (p-monotonic1 P p C {m}) (p-monotonic P p C {Suc n} {m} a) ... | tri≈ ¬a refl ¬c = refl-⊆ ... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> n≤m c ) @@ -159,12 +159,12 @@ f04 y lt1 = subst₂ (λ j k → odef j k ) (sym *iso) &iso (incl p⊆q (subst₂ (λ j k → odef k j ) (sym &iso) *iso ( pn<gr PD∋p y lt1 ))) -- odef (* (find-p P C (gr PD∋p) (& p0))) y → odef (* (& q)) y f2 : {p q : HOD} → PDHOD P p0 C ∋ p → PDHOD P p0 C ∋ q → PDHOD P p0 C ∋ (p ∩ q) - f2 {p} {q} PD∋p PD∋q with <-cmp (gr PD∋p) (gr PD∋q) + f2 {p} {q} PD∋p PD∋q with <-cmp (gr PD∋q) (gr PD∋p) ... | tri< a ¬b ¬c = record { gr = gr PD∋p ; pn<gr = λ y lt → subst (λ k → odef k y ) (sym *iso) (f3 y lt); x∈PP = ODC.power-∩ O (x∈PP PD∋p) (x∈PP PD∋q) } where f3 : (y : Ordinal) → odef (* (find-p P C (gr PD∋p) (& p0))) y → odef (p ∩ q) y f3 y lt = ⟪ subst (λ k → odef k y) *iso (pn<gr PD∋p y lt) , subst (λ k → odef k y) *iso (pn<gr PD∋q y (f5 lt)) ⟫ where f5 : odef (* (find-p P C (gr PD∋p) (& p0))) y → odef (* (find-p P C (gr PD∋q) (& p0))) y - f5 lt = subst (λ k → odef (* (find-p P C (gr PD∋q) (& p0))) k ) &iso ( incl (p-monotonic P p0 C {gr PD∋p} {gr PD∋q} (<to≤ a)) + f5 lt = subst (λ k → odef (* (find-p P C (gr PD∋q) (& p0))) k ) &iso ( incl (p-monotonic P p0 C {gr PD∋q} {gr PD∋p} (<to≤ a)) (subst (λ k → odef (* (find-p P C (gr PD∋p) (& p0))) k ) (sym &iso) lt) ) ... | tri≈ ¬a refl ¬c = record { gr = gr PD∋p ; pn<gr = λ y lt → subst (λ k → odef k y ) (sym *iso) (f4 y lt); x∈PP = ODC.power-∩ O (x∈PP PD∋p) (x∈PP PD∋q) } where f4 : (y : Ordinal) → odef (* (find-p P C (gr PD∋p) (& p0))) y → odef (p ∩ q) y @@ -173,7 +173,7 @@ f3 : (y : Ordinal) → odef (* (find-p P C (gr PD∋q) (& p0))) y → odef (p ∩ q) y f3 y lt = ⟪ subst (λ k → odef k y) *iso (pn<gr PD∋p y (f5 lt)) , subst (λ k → odef k y) *iso (pn<gr PD∋q y lt) ⟫ where f5 : odef (* (find-p P C (gr PD∋q) (& p0))) y → odef (* (find-p P C (gr PD∋p) (& p0))) y - f5 lt = subst (λ k → odef (* (find-p P C (gr PD∋p) (& p0))) k ) &iso ( incl (p-monotonic P p0 C {gr PD∋q} {gr PD∋p} (<to≤ c)) + f5 lt = subst (λ k → odef (* (find-p P C (gr PD∋p) (& p0))) k ) &iso ( incl (p-monotonic P p0 C {gr PD∋p} {gr PD∋q} (<to≤ c)) (subst (λ k → odef (* (find-p P C (gr PD∋q) (& p0))) k ) (sym &iso) lt) ) fdense : (D : Dense P ) → ¬ (filter.Dense.dense D ∩ PDHOD P p0 C) ≡ od∅ fdense D eq0 = ⊥-elim ( ∅< {Dense.dense D ∩ PDHOD P p0 C} fd01 (≡od∅→=od∅ eq0 )) where @@ -191,7 +191,8 @@ fd04 : dense-f D p0⊆P ⊆ P fd04 = ODC.power→⊆ O _ _ ( incl PP∋D fd02 ) fd03 : PDHOD P p0 C ∋ dense-f D p0⊆P - fd03 = f1 {p0} {dense-f D p0⊆P} fd04 fd00 ( dense-p D (ODC.power→⊆ O _ _ Pp0 ) ) + fd03 = {!!} + -- f1 {p0} {dense-f D p0⊆P} fd04 fd00 ( dense-p D (ODC.power→⊆ O _ _ Pp0 ) ) fd01 : (dense D ∩ PDHOD P p0 C) ∋ fd fd01 = ⟪ fd02 , fd03 ⟫ @@ -246,7 +247,7 @@ ; d⊆P = record { incl = λ {x} lt → proj1 lt } ; dense-f = df ; dense-d = df-d - ; dense-p = df-p + ; dense-p = {!!} } D∩G=∅ : ( D ∩ G ) =h= od∅ D∩G=∅ = ≡od∅→=od∅ ([a-b]∩b=0 {Power P} {G}) @@ -264,7 +265,7 @@ lemma725-1 = {!!} lemma726 : (C : CountableModel ) - → Union ( Replace' (Power HODω2) (λ p lt → filter ( genf ( P-GenericFilter HODω2 p lt C )))) =h= ω→2 -- HODω2 ∋ p + → Union ( Replace' (Power (ω→2 \ HODω2)) (λ p lt → filter ( genf ( P-GenericFilter (ω→2 \ HODω2) p lt C )))) =h= ω→2 -- HODω2 ∋ p lemma726 = {!!} --