Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 962:d594a8439174
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 04 Nov 2022 19:19:51 +0900 |
parents | 811135ad1904 |
children | a8c3ccf8f9d9 |
files | src/zorn.agda |
diffstat | 1 files changed, 12 insertions(+), 12 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Fri Nov 04 18:55:44 2022 +0900 +++ b/src/zorn.agda Fri Nov 04 19:19:51 2022 +0900 @@ -240,9 +240,9 @@ ay : odef B y x=fy : x ≡ f y --- record IsSup (A B : HOD) {x : Ordinal } (xa : odef A x) : Set n where --- field --- x≤sup : {y : Ordinal} → odef B y → (y ≡ x ) ∨ (y << x ) +record IsSUP (A B : HOD) {x : Ordinal } (xa : odef A x) : Set n where + field + x≤sup : {y : Ordinal} → odef B y → (y ≡ x ) ∨ (y << x ) record IsMinSUP (A B : HOD) ( f : Ordinal → Ordinal ) {x : Ordinal } (xa : odef A x) : Set n where field @@ -409,7 +409,7 @@ field supf : Ordinal → Ordinal sup=u : {b : Ordinal} → (ab : odef A b) → b o≤ z - → IsMinSUP A (UnionCF A f mf ay supf b) f ab ∧ (¬ HasPrev A (UnionCF A f mf ay supf b) f b ) → supf b ≡ b + → IsSUP A (UnionCF A f mf ay supf b) ab ∧ (¬ HasPrev A (UnionCF A f mf ay supf b) f b ) → supf b ≡ b asupf : {x : Ordinal } → odef A (supf x) supf-mono : {x y : Ordinal } → x o≤ y → supf x o≤ supf y @@ -1388,9 +1388,10 @@ z23 : {z : Ordinal } → odef chain z → odef (UnionCF A f mf as0 (ZChain.supf zc) sp) z z23 {z} ⟪ au , ch-init fc ⟫ = ⟪ au , ch-init fc ⟫ z23 {z} ⟪ au , ch-is-sup u u<x is-sup fc ⟫ = ⟪ au , ch-is-sup u z24 is-sup fc ⟫ where - z26 : supf sp <= sp - z26 = MinSUP.x≤sup sp1 ⟪ ? - , ch-is-sup sp ? ? (init (ZChain.asupf zc) ? ) ⟫ + -- to prove sp is minsup , supf sp ≡ sp is necessary + -- to prove supf s ≡ sp , sp is minsup is necessary + z26 : supf sp ≡ sp + z26 = ZChain.sup=u zc ? ? ⟪ record { x≤sup = ? } , ? ⟫ z25 : u <= sp z25 = MinSUP.x≤sup sp1 ⟪ subst (λ k → odef A k) (ChainP.supu=u is-sup) (ZChain.asupf zc) , ch-is-sup u u<x is-sup (init (ZChain.asupf zc) (ChainP.supu=u is-sup)) ⟫ @@ -1539,9 +1540,8 @@ z32 = ftrans<=-< z31 (subst (λ k → * mc < * k ) (cong (cf nmx) x=fy) z30 ) z48 : ( * (cf nmx (cf nmx y)) ≡ * (supf mc)) ∨ (* (cf nmx (cf nmx y)) < * (supf mc) ) z48 = <=to≤ (ZChain1.order (SZ1 (cf nmx) (cf-is-≤-monotonic nmx) as0 zc (& A)) mc<A u<x (fsuc _ ( fsuc _ fc ))) - is-sup : IsMinSUP A (UnionCF A (cf nmx) (cf-is-≤-monotonic nmx) as0 (ZChain.supf zc) mc) (cf nmx) (MinSUP.asm msp1) - is-sup = record { x≤sup = λ zy → MinSUP.x≤sup msp1 (chain-mono (cf nmx) (cf-is-≤-monotonic nmx) as0 supf (ZChain.supf-mono zc) (o<→≤ mc<A) zy ) - ; minsup = ? ; not-hp = not-hasprev } + is-sup : IsSUP A (UnionCF A (cf nmx) (cf-is-≤-monotonic nmx) as0 (ZChain.supf zc) mc) (MinSUP.asm msp1) + is-sup = record { x≤sup = λ zy → MinSUP.x≤sup msp1 (chain-mono (cf nmx) (cf-is-≤-monotonic nmx) as0 supf (ZChain.supf-mono zc) (o<→≤ mc<A) zy ) } not-hasprev : ¬ HasPrev A (UnionCF A (cf nmx) (cf-is-≤-monotonic nmx) as0 supf d) (cf nmx) d @@ -1591,8 +1591,8 @@ -- ... | case1 eq = MinSUP.x≤sup spd ( subst₂ (λ j k → FClosure A (cf nmx) j k ) (trans (ChainP.supu=u is-sup1) eq) refl fc ) -- ... | case2 lt = z45 (case2 (z47 {mc} {d} {asc} spd (z49 lt) z48 )) - is-sup : IsMinSUP A (UnionCF A (cf nmx) (cf-is-≤-monotonic nmx) as0 (ZChain.supf zc) d) (cf nmx) (MinSUP.asm spd) - is-sup = record { x≤sup = z22 ; minsup = ? ; not-hp = not-hasprev } where + is-sup : IsSUP A (UnionCF A (cf nmx) (cf-is-≤-monotonic nmx) as0 (ZChain.supf zc) d) (MinSUP.asm spd) + is-sup = record { x≤sup = z22 } where z23 : {z : Ordinal } → odef (uchain (cf nmx) (cf-is-≤-monotonic nmx) asc) z → (z ≡ MinSUP.sup spd) ∨ (z << MinSUP.sup spd) z23 lt = MinSUP.x≤sup spd lt z22 : {y : Ordinal} → odef (UnionCF A (cf nmx) (cf-is-≤-monotonic nmx) as0 (ZChain.supf zc) d) y →