Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 307:d5c5d87b72df
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 29 Jun 2020 23:09:14 +0900 |
parents | b07fc3ef5aab |
children | b172ab9f12bc |
files | OD.agda |
diffstat | 1 files changed, 5 insertions(+), 5 deletions(-) [+] |
line wrap: on
line diff
--- a/OD.agda Mon Jun 29 20:33:19 2020 +0900 +++ b/OD.agda Mon Jun 29 23:09:14 2020 +0900 @@ -226,7 +226,7 @@ ZFSubset A x = record { od = record { def = λ y → odef A y ∧ odef x y } ; odmax = {!!} ; <odmax = {!!} } -- roughly x = A → Set OPwr : (A : HOD ) → HOD -OPwr A = Ord ( sup-o {!!} {!!} ) -- ( λ x → od→ord ( ZFSubset A x) ) ) +OPwr A = Ord ( sup-o A {!!} ) -- ( λ x → od→ord ( ZFSubset A x) ) ) -- _⊆_ : ( A B : HOD ) → ∀{ x : HOD } → Set n -- _⊆_ A B {x} = A ∋ x → B ∋ x @@ -277,7 +277,7 @@ Select : (X : HOD ) → ((x : HOD ) → Set n ) → HOD Select X ψ = record { od = record { def = λ x → ( odef X x ∧ ψ ( ord→od x )) } ; odmax = {!!} ; <odmax = {!!} } Replace : HOD → (HOD → HOD ) → HOD - Replace X ψ = record { od = record { def = λ x → (x o< sup-o {!!} {!!} ) ∧ odef (in-codomain X ψ) x } ; odmax = {!!} ; <odmax = {!!} } -- ( λ x → od→ord (ψ x)) + Replace X ψ = record { od = record { def = λ x → (x o< sup-o X {!!} ) ∧ odef (in-codomain X ψ) x } ; odmax = {!!} ; <odmax = {!!} } -- ( λ x → od→ord (ψ x)) _∩_ : ( A B : ZFSet ) → ZFSet A ∩ B = record { od = record { def = λ x → odef A x ∧ odef B x } ; odmax = {!!} ; <odmax = {!!} } Union : HOD → HOD @@ -403,7 +403,7 @@ lemma1 : {a : Ordinal } { t : HOD } → (eq : ZFSubset (Ord a) t =h= t) → od→ord (ZFSubset (Ord a) (ord→od (od→ord t))) ≡ od→ord t lemma1 {a} {t} eq = subst (λ k → od→ord (ZFSubset (Ord a) k) ≡ od→ord t ) (sym oiso) (cong (λ k → od→ord k ) (==→o≡ eq )) - lemma : od→ord (ZFSubset (Ord a) (ord→od (od→ord t)) ) o< sup-o {!!} {!!} -- (λ x → od→ord (ZFSubset (Ord a) x)) + lemma : od→ord (ZFSubset (Ord a) (ord→od (od→ord t)) ) o< sup-o (Ord a) {!!} -- (λ x → od→ord (ZFSubset (Ord a) x)) lemma = {!!} -- sup-o< -- @@ -441,8 +441,8 @@ ≡⟨ sym (==→o≡ ( ∩-≡ t→A )) ⟩ t ∎ - lemma1 : od→ord t o< sup-o {!!} {!!} -- (λ x → od→ord (A ∩ x)) - lemma1 = subst (λ k → od→ord k o< sup-o {!!} {!!}) -- (λ x → od→ord (A ∩ x))) + lemma1 : od→ord t o< sup-o (OPwr (Ord (od→ord A))) {!!} -- (λ x → od→ord (A ∩ x)) + lemma1 = subst (λ k → od→ord k o< sup-o (OPwr (Ord (od→ord A))) {!!}) -- (λ x → od→ord (A ∩ x))) lemma4 {!!} -- (sup-o< {λ x → od→ord (A ∩ x)} ) lemma2 : odef (in-codomain (OPwr (Ord (od→ord A))) (_∩_ A)) (od→ord t) lemma2 not = ⊥-elim ( not (od→ord t) (record { proj1 = lemma3 ; proj2 = lemma6 }) ) where