Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1137:d618788852e5
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 13 Jan 2023 09:30:31 +0900 |
parents | 181ffd308ab5 |
children | dd18bb8d2893 |
files | src/filter.agda |
diffstat | 1 files changed, 23 insertions(+), 2 deletions(-) [+] |
line wrap: on
line diff
--- a/src/filter.agda Fri Jan 13 08:22:20 2023 +0900 +++ b/src/filter.agda Fri Jan 13 09:30:31 2023 +0900 @@ -323,9 +323,30 @@ FX : HOD FX = F⊆X {L} {P} LP F FX∋F : odef FX (& (filter F)) - FX∋F = ⟪ record { f⊆L = subst (λ k → k ⊆ L) (sym *iso) (f⊆L F) ; filter1 = ? ; filter2 = ? ; proper = ? } , subst (λ k → filter F ⊆ k ) (sym *iso) ( λ x → x ) ⟫ + oF = & (filter F) + mf11 : { p q : Ordinal } → odef L q → odef (* oF) p → (* p) ⊆ (* q) → odef (* oF) q + mf11 {p} {q} Lq Fp p⊆q = subst₂ (λ j k → odef j k ) (sym *iso) &iso ( filter1 F (subst (λ k → odef L k) (sym &iso) Lq) + (subst₂ (λ j k → odef j k ) *iso (sym &iso) Fp) p⊆q ) + mf12 : { p q : Ordinal } → odef (* oF) p → odef (* oF) q → odef L (& ((* p) ∩ (* q))) → odef (* oF) (& ((* p) ∩ (* q))) + mf12 {p} {q} Fp Fq Lpq = subst (λ k → odef k (& ((* p) ∩ (* q))) ) (sym *iso) + ( filter2 F (subst₂ (λ j k → odef j k ) *iso (sym &iso) Fp) (subst₂ (λ j k → odef j k ) *iso (sym &iso) Fq) Lpq) + FX∋F = ⟪ record { f⊆L = subst (λ k → k ⊆ L) (sym *iso) (f⊆L F) ; filter1 = mf11 ; filter2 = mf12 + ; proper = subst₂ (λ j k → ¬ (odef j k) ) (sym *iso) ord-od∅ Fprop } + , subst (λ k → filter F ⊆ k ) (sym *iso) ( λ x → x ) ⟫ SUP⊆ : (B : HOD) → B ⊆ FX → IsTotalOrderSet B → SUP FX B - SUP⊆ B B⊆FX OB = record { sup = Union B ; isSUP = record { ax = ? ; x≤sup = ? } } + SUP⊆ B B⊆FX OB = record { sup = Union B ; isSUP = record { ax = mf13 ; x≤sup = ? } } where + mf16 : Union B ⊆ L + mf16 record { owner = b ; ao = Bb ; ox = bx } = is-filter.f⊆L ( proj1 ( B⊆FX Bb )) bx + mf17 : {p q : Ordinal} → odef L q → odef (* (& (Union B))) p → * p ⊆ * q → odef (* (& (Union B))) q + mf17 {p} {q} Lq bp p⊆q with subst (λ k → odef k p ) *iso bp + ... | record { owner = owner ; ao = ao ; ox = ox } = subst (λ k → odef k q) (sym *iso) + record { owner = ? ; ao = ? ; ox = ? } + mf14 : is-filter LP (& (Union B)) + mf14 = record { f⊆L = subst (λ k → k ⊆ L) (sym *iso) mf16 ; filter1 = mf17 ; filter2 = ? ; proper = ? } + mf15 : filter F ⊆ Union B + mf15 {x} Fx = record { owner = ? ; ao = ? ; ox = subst (λ k → odef k x) (sym *iso) Fx } + mf13 : odef FX (& (Union B)) + mf13 = ⟪ mf14 , subst (λ k → filter F ⊆ k ) (sym *iso) mf15 ⟫ mx : Maximal FX mx = Zorn-lemma (∈∅< FX∋F) SUP⊆ imf : is-filter {L} {P} LP (& (Maximal.maximal mx))