Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 603:d68114d45d2f
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 14 Jun 2022 15:14:28 +0900 |
parents | 0ef3ef93c5c3 |
children | 021fcb324990 |
files | src/zorn.agda |
diffstat | 1 files changed, 24 insertions(+), 15 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Tue Jun 14 14:36:45 2022 +0900 +++ b/src/zorn.agda Tue Jun 14 15:14:28 2022 +0900 @@ -233,20 +233,20 @@ field x<sup : {y : Ordinal} → odef B y → (y ≡ x ) ∨ (y << x ) -record FChain ( A : HOD ) ( f : Ordinal → Ordinal ) (p c : Ordinal) ( x : Ordinal ) : Set n where +record FChain ( A : HOD ) ( f : Ordinal → Ordinal ) (p c z : Ordinal) ( x : Ordinal ) : Set n where field fc∨sup : FClosure A f p x chain∋p : odef (* c) p -record FSup ( A : HOD ) ( f : Ordinal → Ordinal ) (p c : Ordinal) ( x : Ordinal ) : Set n where +record FSup ( A : HOD ) ( f : Ordinal → Ordinal ) (p c z : Ordinal) ( x : Ordinal ) : Set n where field sup : (z : Ordinal) → FClosure A f p z → * z < * x chain∋p : odef (* c) p -data Fc∨sup (A : HOD) {y : Ordinal} (ay : odef A y) ( f : Ordinal → Ordinal ) (c : Ordinal) : (x : Ordinal) → Set n where - Finit : {z : Ordinal} → z ≡ y → Fc∨sup A ay f c z - Fsup : {p x : Ordinal} → p o< x → Fc∨sup A ay f c p → FSup A f p c x → Fc∨sup A ay f c x - Fc : {p x : Ordinal} → p o< x → Fc∨sup A ay f c p → FChain A f p c x → Fc∨sup A ay f c x +data Fc∨sup (A : HOD) {y : Ordinal} (ay : odef A y) ( f : Ordinal → Ordinal ) (c z : Ordinal) : (x : Ordinal) → Set n where + Finit : {i : Ordinal} → i ≡ y → Fc∨sup A ay f c z i + Fsup : {p x : Ordinal} → p o< x → Fc∨sup A ay f c z p → FSup A f p c z x → x o< osuc z → Fc∨sup A ay f c z x + Fc : {p x : Ordinal} → p o< x → Fc∨sup A ay f c z p → FChain A f p c z x → Fc∨sup A ay f c z x record ZChain ( A : HOD ) (x : Ordinal) ( f : Ordinal → Ordinal ) ( z : Ordinal ) : Set (Level.suc n) where field @@ -260,8 +260,8 @@ is-max : {a b : Ordinal } → (ca : odef chain a ) → b o< osuc z → (ab : odef A b) → HasPrev A chain ab f ∨ IsSup A chain ab → * a < * b → odef chain b - chain∋sup : (s : HOD) → s ⊆' chain → {b : Ordinal} (ab : odef A b) → b o< z → IsSup A s ab → odef chain b - fc∨sup : {c : Ordinal } → ( ca : odef chain c ) → Fc∨sup A (chain⊆A chain∋x) f (& chain) c + chain∋sup : (s : HOD) → s ⊆' chain → {b : Ordinal} (ab : odef A b) → b o< osuc z → IsSup A s ab → odef chain b + fc∨sup : {c : Ordinal } → ( ca : odef chain c ) → Fc∨sup A (chain⊆A chain∋x) f (& chain) z c record Maximal ( A : HOD ) : Set (Level.suc n) where @@ -426,12 +426,21 @@ ; initial = {!!} ; f-immediate = {!!} ; chain∋x = init ay ; is-max = {!!} ; fc∨sup = {!!} } where i-total : IsTotalOrderSet ys i-total fa fb = subst₂ (λ a b → Tri (a < b) (a ≡ b) (b < a ) ) *iso *iso (fcn-cmp y f mf fa fb) + + fcs< : {w : Ordinal} (c z : Ordinal) (x : Ordinal) → z o< w → Fc∨sup A ay f c z x → Fc∨sup A ay f c w x + fcs< c z x z<w (Finit x₁) = Finit x₁ + fcs< {w} c z x z<w (Fsup {p} x₁ FC x₂ x₃) = Fsup x₁ (fcs< c z p z<w FC) record { sup = FSup.sup x₂ ; chain∋p = FSup.chain∋p x₂ } + (x<ow x₃ z<w ) where + x<ow : x o< osuc z → z o< w → x o< osuc w + x<ow x<z z<w = ordtrans x<z (osucc z<w) + fcs< {w} c z x z<w (Fc {p} x₁ FC x₂) = Fc x₁ (fcs< c z p z<w FC) record { fc∨sup = FChain.fc∨sup x₂; chain∋p = FChain.chain∋p x₂} + zc4 : ZChain A y f x zc4 with ODC.∋-p O A (* x) ... | no noax = -- ¬ A ∋ p, just skip record { chain = ZChain.chain zc0 ; chain⊆A = ZChain.chain⊆A zc0 ; initial = ZChain.initial zc0 ; f-total = ZChain.f-total zc0 ; f-next = ZChain.f-next zc0 ; chain∋sup = {!!} - ; f-immediate = ZChain.f-immediate zc0 ; chain∋x = ZChain.chain∋x zc0 ; is-max = zc11 ; fc∨sup = ZChain.fc∨sup zc0 } where -- no extention + ; f-immediate = ZChain.f-immediate zc0 ; chain∋x = ZChain.chain∋x zc0 ; is-max = zc11 ; fc∨sup = {!!} } where -- no extention zc11 : {a b : Ordinal} → odef (ZChain.chain zc0) a → b o< osuc x → (ab : odef A b) → HasPrev A (ZChain.chain zc0) ab f ∨ IsSup A (ZChain.chain zc0) ab → * a < * b → odef (ZChain.chain zc0) b @@ -450,7 +459,7 @@ zc9 : ZChain A y f x zc9 = record { chain = ZChain.chain zc0 ; chain⊆A = ZChain.chain⊆A zc0 ; f-total = ZChain.f-total zc0 ; f-next = ZChain.f-next zc0 -- no extention ; chain∋sup = {!!} - ; initial = ZChain.initial zc0 ; f-immediate = ZChain.f-immediate zc0 ; chain∋x = ZChain.chain∋x zc0 ; is-max = zc17 ; fc∨sup = ZChain.fc∨sup zc0 } + ; initial = ZChain.initial zc0 ; f-immediate = ZChain.f-immediate zc0 ; chain∋x = ZChain.chain∋x zc0 ; is-max = zc17 ; fc∨sup = {!!} } ... | case2 ¬fy<x with ODC.p∨¬p O (IsSup A (ZChain.chain zc0) ax ) ... | case1 is-sup = -- x is a sup of zc0 record { chain = schain ; chain⊆A = s⊆A ; f-total = scmp ; f-next = scnext ; chain∋sup = {!!} @@ -477,7 +486,7 @@ s⊆A : schain ⊆' A s⊆A {x} (case1 zx) = ZChain.chain⊆A zc0 zx s⊆A {x} (case2 fx) = A∋fc (& sp) f mf fx - s-fc∨sup : {c : Ordinal} → odef schain c → Fc∨sup A (s⊆A (case1 (ZChain.chain∋x zc0))) f (& schain) c + s-fc∨sup : {c : Ordinal} → odef schain c → Fc∨sup A (s⊆A (case1 (ZChain.chain∋x zc0))) f (& schain) x c s-fc∨sup {c} (case1 cx) = {!!} s-fc∨sup {c} (case2 fc) = {!!} cmp : {a b : HOD} (za : odef chain (& a)) (fb : FClosure A f (& sp) (& b)) → Tri (a < b) (a ≡ b) (b < a ) @@ -558,7 +567,7 @@ ... | case2 y<b = ZChain.is-max zc0 (ZChain.chain∋x zc0 ) (zc0-b<x b b<x) ab (case2 (z24 p)) y<b ... | case2 ¬x=sup = -- x is not f y' nor sup of former ZChain from y record { chain = ZChain.chain zc0 ; chain⊆A = ZChain.chain⊆A zc0 ; f-total = ZChain.f-total zc0 ; f-next = ZChain.f-next zc0 ; chain∋sup = {!!} - ; initial = ZChain.initial zc0 ; f-immediate = ZChain.f-immediate zc0 ; chain∋x = ZChain.chain∋x zc0 ; is-max = z18 ; fc∨sup = ZChain.fc∨sup zc0 } where + ; initial = ZChain.initial zc0 ; f-immediate = ZChain.f-immediate zc0 ; chain∋x = ZChain.chain∋x zc0 ; is-max = z18 ; fc∨sup = {!!} } where -- no extention z18 : {a b : Ordinal} → odef (ZChain.chain zc0) a → b o< osuc x → (ab : odef A b) → HasPrev A (ZChain.chain zc0) ab f ∨ IsSup A (ZChain.chain zc0) ab → @@ -602,12 +611,12 @@ → ((j : Ordinal) → j o< i → odef (chain za) j → odef (chain zb) j) → odef (chain za) i → odef (chain zb) i uind i previ zai = um01 where - FC : Fc∨sup A (chain⊆A za (chain∋x za)) f (& (chain za)) i - FC = fc∨sup za zai + FC : Fc∨sup A (chain⊆A za (chain∋x za)) f (& (chain za)) a i + FC = fc∨sup za zai um01 : odef (chain zb) i um01 with FC ... | Finit i=y = subst (λ k → odef (chain zb) k ) (sym i=y) ( chain∋x zb ) - ... | Fsup {p} {i} p<i pFC sup = cb∋i where + ... | Fsup {p} {i} p<i pFC sup i≤b = cb∋i where i-asup : (z : Ordinal) → FClosure A f p z → * z < * i i-asup = FSup.sup sup um06 : odef (chain za) p