Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1157:d6a8738ac505
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 19 Jan 2023 17:22:02 +0900 |
parents | c4fd0bfdfbae |
children | 6216562a2bce |
files | src/filter.agda |
diffstat | 1 files changed, 9 insertions(+), 11 deletions(-) [+] |
line wrap: on
line diff
--- a/src/filter.agda Thu Jan 19 11:13:40 2023 +0900 +++ b/src/filter.agda Thu Jan 19 17:22:02 2023 +0900 @@ -55,7 +55,7 @@ record prime-filter { L P : HOD } {LP : L ⊆ Power P} (F : Filter {L} {P} LP) : Set (suc (suc n)) where field proper : ¬ (filter F ∋ od∅) - prime : {p q : HOD } → L ∋ p → L ∋ q → L ∋ (p ∪ q) → filter F ∋ (p ∪ q) → ( filter F ∋ p ) ∨ ( filter F ∋ q ) + prime : {p q : HOD } → L ∋ p → L ∋ q → filter F ∋ (p ∪ q) → ( filter F ∋ p ) ∨ ( filter F ∋ q ) record ultra-filter { L P : HOD } {LP : L ⊆ Power P} (F : Filter {L} {P} LP) : Set (suc (suc n)) where field @@ -102,12 +102,12 @@ → ({p : HOD} → L ∋ p → L ∋ (P \ p)) → ({p q : HOD} → L ∋ p → L ∋ q → L ∋ (p ∩ q )) → (F : Filter {L} {P} LP) → ultra-filter F → prime-filter F -filter-lemma1 {P} {L} LP NG IN F u = record { +filter-lemma1 {P} {L} LNEG NEG CAP F u = record { proper = ultra-filter.proper u ; prime = lemma3 } where - lemma3 : {p q : HOD} → L ∋ p → L ∋ q → L ∋ (p ∪ q) → filter F ∋ (p ∪ q) → ( filter F ∋ p ) ∨ ( filter F ∋ q ) - lemma3 {p} {q} Lp Lq _ lt with ultra-filter.ultra u Lp (NG Lp) + lemma3 : {p q : HOD} → L ∋ p → L ∋ q → filter F ∋ (p ∪ q) → ( filter F ∋ p ) ∨ ( filter F ∋ q ) + lemma3 {p} {q} Lp Lq lt with ultra-filter.ultra u Lp (NEG Lp) ... | case1 p∈P = case1 p∈P ... | case2 ¬p∈P = case2 (filter1 F {q ∩ (P \ p)} Lq lemma7 lemma8) where lemma5 : ((p ∪ q ) ∩ (P \ p)) =h= (q ∩ (P \ p)) @@ -119,7 +119,7 @@ lemma4 x lt | case1 px = ⊥-elim ( proj2 (proj2 lt) px ) lemma4 x lt | case2 qx = qx lemma9 : L ∋ ((p ∪ q ) ∩ (P \ p)) - lemma9 = subst (λ k → L ∋ k ) (sym (==→o≡ lemma5)) (IN Lq (NG Lp)) + lemma9 = subst (λ k → L ∋ k ) (sym (==→o≡ lemma5)) (CAP Lq (NEG Lp)) lemma6 : filter F ∋ ((p ∪ q ) ∩ (P \ p)) lemma6 = filter2 F lt ¬p∈P lemma9 lemma7 : filter F ∋ (q ∩ (P \ p)) @@ -135,9 +135,9 @@ filter-lemma2 : {P L : HOD} → (LP : L ⊆ Power P) → ({p : HOD} → L ∋ p → L ∋ ( P \ p)) → (F : Filter {L} {P} LP) → filter F ∋ P → prime-filter F → ultra-filter F -filter-lemma2 {P} {L} LP Lm F f∋P prime = record { +filter-lemma2 {P} {L} LP NEG F f∋P prime = record { proper = prime-filter.proper prime - ; ultra = λ {p} L∋p _ → prime-filter.prime prime L∋p (Lm L∋p) (lemma10 L∋p ((f⊆L F) f∋P) ) (lemma p (p⊆L L∋p )) + ; ultra = λ {p} L∋p _ → prime-filter.prime prime L∋p (NEG L∋p) (lemma p (p⊆L L∋p )) } where open _==_ p⊆L : {p : HOD} → L ∋ p → p ⊆ P @@ -150,8 +150,6 @@ eq← (p+1-p=1 {p} p⊆P) {x} ( case2 ¬p ) = proj1 ¬p lemma : (p : HOD) → p ⊆ P → filter F ∋ (p ∪ (P \ p)) lemma p p⊆P = subst (λ k → filter F ∋ k ) (==→o≡ (p+1-p=1 {p} p⊆P)) f∋P - lemma10 : {p : HOD} → L ∋ p → L ∋ P → L ∋ (p ∪ (P \ p)) - lemma10 {p} L∋p lt = subst (λ k → L ∋ k ) (==→o≡ (p+1-p=1 {p} (p⊆L L∋p))) lt record Dense {L P : HOD } (LP : L ⊆ Power P) : Set (suc n) where field @@ -267,7 +265,7 @@ → L ∋ p → L ∋ ( P \ p)) → ({p q : HOD} → L ∋ p → L ∋ q → L ∋ (p ∩ q)) → (U : Filter {L} {P} LP) → ultra-filter U → MaximumFilter LP U -ultra→max {L} {P} LP NG CAP U u = record { mf = U ; F⊆mf = λ x → x ; proper = ultra-filter.proper u ; is-maximum = is-maximum } where +ultra→max {L} {P} LP NEG CAP U u = record { mf = U ; F⊆mf = λ x → x ; proper = ultra-filter.proper u ; is-maximum = is-maximum } where is-maximum : (F : Filter {L} {P} LP) → (¬ (filter F ∋ od∅)) → filter U ⊆ filter F → (U⊂F : filter U ⊂ filter F ) → ⊥ is-maximum F Prop F⊆U ⟪ U<F , U⊆F ⟫ = Prop f0 where GT : HOD @@ -289,7 +287,7 @@ um00 : ¬ odef (filter U) (& p) um00 = proj2 (ODC.x∋minimal O GT GT≠∅) L∋-p : L ∋ ( P \ p ) - L∋-p = NG L∋p + L∋-p = NEG L∋p U∋-p : filter U ∋ ( P \ p ) U∋-p with ultra-filter.ultra u {p} L∋p L∋-p ... | case1 ux = ⊥-elim ( ¬U∋p ux )