Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 945:da156642b8d0
memory exhaust work around
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 31 Oct 2022 02:08:52 +0900 |
parents | e1d727251e25 |
children | 3377379a1479 |
files | src/zorn.agda |
diffstat | 1 files changed, 19 insertions(+), 8 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Sun Oct 30 22:53:22 2022 +0900 +++ b/src/zorn.agda Mon Oct 31 02:08:52 2022 +0900 @@ -1493,6 +1493,12 @@ -- u<x : ZChain.supf zc u o< ZChain.supf zc d -- supf u o< spuf c → order + z43 : (u w : Ordinal ) → ( u o< w ) ∨ ( u ≡ w ) ∨ ( w o< u ) + z43 u w with trio< u w + ... | tri< a ¬b ¬c = case1 a + ... | tri≈ ¬a b ¬c = case2 (case1 b) + ... | tri> ¬a ¬b c = case2 (case2 c) + not-hasprev : ¬ HasPrev A (UnionCF A (cf nmx) (cf-is-≤-monotonic nmx) as0 (ZChain.supf zc) d) d (cf nmx) not-hasprev hp = ⊥-elim (z29 {mc} {asc} spd z31 hp ) where z31 : odef (ZChain.chain zc) (cf nmx d) @@ -1508,7 +1514,7 @@ → HasPrev A (UnionCF A (cf nmx) (cf-is-≤-monotonic nmx) as0 (ZChain.supf zc) (MinSUP.sup spd)) (MinSUP.sup spd) (cf nmx) → ⊥ z29 {mc} {asc} spd ⟪ aa , ch-init fc ⟫ hp = ? - z29 {mc} {asc} spd ⟪ aa , ch-is-sup u u<x is-sup fc ⟫ hp = <-irr (z26 u mc d1) z30 where + z29 {mc} {asc} spd ⟪ aa , ch-is-sup u u<x is-sup fc ⟫ hp = <-irr z26 z30 where y : Ordinal y = HasPrev.y hp -- cf nmx y ≡ d1 zy : odef (UnionCF A (cf nmx) (cf-is-≤-monotonic nmx) as0 (ZChain.supf zc) (MinSUP.sup spd)) y @@ -1519,13 +1525,18 @@ z30 = proj1 (cf-is-<-monotonic nmx d1 (MinSUP.asm spd)) z24 : y << d1 z24 = subst (λ k → y << k) (sym (HasPrev.x=fy hp)) ( proj1 (cf-is-<-monotonic nmx y (proj1 (HasPrev.ay hp) ) )) - z26 : (u mc d1 : Ordinal ) → (* (cf nmx d1) ≡ * d1) ∨ (* (cf nmx d1) < * d1) - z26 u mc d1 = ? -- with trio< u (supf mc) - -- ... | tri< a ¬b ¬c = ? - -- ... | tri> ¬a ¬b x<z = ? - -- ... | tri≈ ¬a b ¬c = ? -- with MinSUP.x<sup spd fc - -- ... | case1 eq = ? -- case1 (cong (*) eq) - -- ... | case2 lt = ? -- case2 lt + z40 : ( u ≡ supf mc ) → (* (cf nmx d1) ≡ * d1) ∨ (* (cf nmx d1) < * d1) + z40 = ? + z41 : ( u o< supf mc ) → (* (cf nmx d1) ≡ * d1) ∨ (* (cf nmx d1) < * d1) + z41 = ? + z42 : ( supf mc o< u ) → (* (cf nmx d1) ≡ * d1) ∨ (* (cf nmx d1) < * d1) + z42 = ? + postulate + z26 : (* (cf nmx d1) ≡ * d1) ∨ (* (cf nmx d1) < * d1) + -- z26 with z43 u (supf mc) + -- ... | case1 lt = z41 lt + -- ... | case2 (case1 eq) = z40 eq + -- ... | case2 (case2 lt) = z42 lt sd=d : supf d ≡ d sd=d = ZChain.sup=u zc (MinSUP.asm spd) (o<→≤ d<A) ⟪ is-sup , not-hasprev ⟫