Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 89:dccc9e2d1804
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 05 Jun 2019 09:47:19 +0900 |
parents | 975e72ae0541 |
children | 38d139b5edac |
files | ordinal-definable.agda |
diffstat | 1 files changed, 9 insertions(+), 18 deletions(-) [+] |
line wrap: on
line diff
--- a/ordinal-definable.agda Wed Jun 05 09:10:33 2019 +0900 +++ b/ordinal-definable.agda Wed Jun 05 09:47:19 2019 +0900 @@ -235,6 +235,9 @@ -- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) +postulate f-extensionality : { n : Level} → Relation.Binary.PropositionalEquality.Extensionality (suc n) (suc (suc n)) + + OD→ZF : {n : Level} → ZF {suc (suc n)} {suc n} OD→ZF {n} = record { ZFSet = OD {suc n} @@ -343,24 +346,12 @@ extensionality : {A B : OD {suc n}} → ((z : OD) → (A ∋ z) ⇔ (B ∋ z)) → A == B eq→ (extensionality {A} {B} eq ) {x} d = def-iso {suc n} {A} {B} (sym diso) (proj1 (eq (ord→od x))) d eq← (extensionality {A} {B} eq ) {x} d = def-iso {suc n} {B} {A} (sym diso) (proj2 (eq (ord→od x))) d - pair-osuc : {x y : OD {suc n}} → (x , x) ∋ y → (od→ord y ) o< osuc (od→ord x) - pair-osuc {x} {y} z with union← (x , x) y {!!} - ... | t = {!!} - next : (x : OD) → Union (x , (x , x)) == ord→od (osuc (od→ord x)) - eq→ (next x ) {y} z = {!!} -- z : y o< osuc (osuc ox ) → y < osuc ox - eq← (next x ) {y} z = def-subst {suc n} {_} {_} {Union (x , (x , x))} {_} - (union→ (x , (x , x)) (ord→od y) (ord→od (osuc y)) (record { proj1 = lemma1 ; proj2 = lemma2 } )) refl diso where - lemma0 : (x , x) ∋ ord→od y - lemma0 = o<-subst {suc n} {od→ord (ord→od y)} {od→ord {!!}} (c<→o< z) {!!} {!!} - lemma1 : (x , (x , x)) ∋ ord→od (osuc y) -- z : def (ord→od (osuc (od→ord x))) y - lemma1 with osuc-≡< {suc n} (def-subst {suc n} (o<→c< {!!}) oiso refl) - lemma1 | case1 x = {!!} - lemma1 | case2 t = {!!} - -- = o<-subst (c<→o< {suc n} {_} {ord→od y} {!!} ) {!!} {!!} - lemma2 : ord→od (osuc y) ∋ ord→od y - lemma2 = o<→c< <-osuc - next' : (x : OD) → ord→od ( od→ord ( Union (x , (x , x)))) == ord→od (osuc (od→ord x)) - next' x = subst ( λ k → k == ord→od (osuc (od→ord x))) (sym oiso) (next x) + xx-union : {x : OD {suc n}} → (x , x) ≡ record { def = λ z → z o< osuc (od→ord x) } + xx-union {x} = cong ( λ k → record { def = λ z → z o< k } ) (omxx (od→ord x)) + xxx-union : {x : OD {suc n}} → (x , (x , x)) ≡ record { def = λ z → z o< osuc (osuc (od→ord x))} + xxx-union {x} = cong ( λ k → record { def = λ z → z o< k } ) lemma where + lemma : {x : OD {suc n}} → omax (od→ord x) (od→ord (x , x)) ≡ osuc (osuc (od→ord x)) + lemma {x} = trans ( sym ( omax< (od→ord x) (od→ord (x , x)) {!!} ) ) ( cong ( λ k → osuc k ) {!!} ) infinite : OD {suc n} infinite = ord→od ( record { lv = Suc Zero ; ord = Φ 1 } ) infinity∅ : ord→od ( record { lv = Suc Zero ; ord = Φ 1 } ) ∋ od∅ {suc n}