Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1138:dd18bb8d2893
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 13 Jan 2023 13:03:45 +0900 |
parents | d618788852e5 |
children | 4517d0721b59 |
files | src/filter.agda |
diffstat | 1 files changed, 35 insertions(+), 17 deletions(-) [+] |
line wrap: on
line diff
--- a/src/filter.agda Fri Jan 13 09:30:31 2023 +0900 +++ b/src/filter.agda Fri Jan 13 13:03:45 2023 +0900 @@ -302,7 +302,7 @@ open import Relation.Binary.Structures -record is-filter { L P : HOD } (LP : L ⊆ Power P) (filter : Ordinal ) : Set n where +record IsFilter { L P : HOD } (LP : L ⊆ Power P) (filter : Ordinal ) : Set n where field f⊆L : (* filter) ⊆ L filter1 : { p q : Ordinal } → odef L q → odef (* filter) p → (* p) ⊆ (* q) → odef (* filter) q @@ -311,18 +311,17 @@ -- all filter contains F F⊆X : { L P : HOD } (LP : L ⊆ Power P) → Filter {L} {P} LP → HOD -F⊆X {L} {P} LP F = record { od = record { def = λ x → is-filter {L} {P} LP x ∧ ( filter F ⊆ * x) } ; odmax = osuc (& L) +F⊆X {L} {P} LP F = record { od = record { def = λ x → IsFilter {L} {P} LP x ∧ ( filter F ⊆ * x) } ; odmax = osuc (& L) ; <odmax = λ {x} lt → fx00 lt } where - fx00 : {x : Ordinal } → is-filter LP x ∧ filter F ⊆ * x → x o< osuc (& L) - fx00 {x} lt = subst (λ k → k o< osuc (& L)) &iso ( ⊆→o≤ (is-filter.f⊆L (proj1 lt )) ) + fx00 : {x : Ordinal } → IsFilter LP x ∧ filter F ⊆ * x → x o< osuc (& L) + fx00 {x} lt = subst (λ k → k o< osuc (& L)) &iso ( ⊆→o≤ (IsFilter.f⊆L (proj1 lt )) ) F→Maximum : {L P : HOD} (LP : L ⊆ Power P) → ({p : HOD} → L ∋ p → L ∋ ( P \ p)) → ({p q : HOD} → L ∋ p → L ∋ q → L ∋ (p ∩ q)) → (F : Filter {L} {P} LP) → o∅ o< & L → {y : Ordinal } → odef (filter F) y → (¬ (filter F ∋ od∅)) → MaximumFilter {L} {P} LP F -F→Maximum {L} {P} LP NEG CAP F 0<L 0<F Fprop = record { mf = mf ; F⊆mf = ? - ; proper = subst (λ k → ¬ ( odef (filter mf ) k)) (sym ord-od∅) ( is-filter.proper imf) ; is-maximum = {!!} } where +F→Maximum {L} {P} LP NEG CAP F 0<L {y} 0<F Fprop = record { mf = mf ; F⊆mf = ? + ; proper = subst (λ k → ¬ ( odef (filter mf ) k)) (sym ord-od∅) ( IsFilter.proper imf) ; is-maximum = {!!} } where FX : HOD FX = F⊆X {L} {P} LP F - FX∋F : odef FX (& (filter F)) oF = & (filter F) mf11 : { p q : Ordinal } → odef L q → odef (* oF) p → (* p) ⊆ (* q) → odef (* oF) q mf11 {p} {q} Lq Fp p⊆q = subst₂ (λ j k → odef j k ) (sym *iso) &iso ( filter1 F (subst (λ k → odef L k) (sym &iso) Lq) @@ -330,36 +329,55 @@ mf12 : { p q : Ordinal } → odef (* oF) p → odef (* oF) q → odef L (& ((* p) ∩ (* q))) → odef (* oF) (& ((* p) ∩ (* q))) mf12 {p} {q} Fp Fq Lpq = subst (λ k → odef k (& ((* p) ∩ (* q))) ) (sym *iso) ( filter2 F (subst₂ (λ j k → odef j k ) *iso (sym &iso) Fp) (subst₂ (λ j k → odef j k ) *iso (sym &iso) Fq) Lpq) + FX∋F : odef FX (& (filter F)) FX∋F = ⟪ record { f⊆L = subst (λ k → k ⊆ L) (sym *iso) (f⊆L F) ; filter1 = mf11 ; filter2 = mf12 ; proper = subst₂ (λ j k → ¬ (odef j k) ) (sym *iso) ord-od∅ Fprop } , subst (λ k → filter F ⊆ k ) (sym *iso) ( λ x → x ) ⟫ SUP⊆ : (B : HOD) → B ⊆ FX → IsTotalOrderSet B → SUP FX B - SUP⊆ B B⊆FX OB = record { sup = Union B ; isSUP = record { ax = mf13 ; x≤sup = ? } } where + SUP⊆ B B⊆FX OB with trio< (& B) o∅ + ... | tri< a ¬b ¬c = ⊥-elim (¬x<0 a ) + ... | tri≈ ¬a b ¬c = record { sup = filter F ; isSUP = record { ax = FX∋F ; x≤sup = λ {y} zy → ⊥-elim (o<¬≡ (sym b) (∈∅< zy)) } } + ... | tri> ¬a ¬b 0<B = record { sup = Union B ; isSUP = record { ax = mf13 ; x≤sup = ? } } where + mf20 : HOD + mf20 = ODC.minimal O B (λ eq → (o<¬≡ (cong (&) (sym (==→o≡ eq))) (subst (λ k → k o< & B) (sym ord-od∅) 0<B ))) + mf18 : odef B (& mf20 ) + mf18 = ODC.x∋minimal O B (λ eq → (o<¬≡ (cong (&) (sym (==→o≡ eq))) (subst (λ k → k o< & B) (sym ord-od∅) 0<B ))) mf16 : Union B ⊆ L - mf16 record { owner = b ; ao = Bb ; ox = bx } = is-filter.f⊆L ( proj1 ( B⊆FX Bb )) bx + mf16 record { owner = b ; ao = Bb ; ox = bx } = IsFilter.f⊆L ( proj1 ( B⊆FX Bb )) bx mf17 : {p q : Ordinal} → odef L q → odef (* (& (Union B))) p → * p ⊆ * q → odef (* (& (Union B))) q mf17 {p} {q} Lq bp p⊆q with subst (λ k → odef k p ) *iso bp ... | record { owner = owner ; ao = ao ; ox = ox } = subst (λ k → odef k q) (sym *iso) - record { owner = ? ; ao = ? ; ox = ? } - mf14 : is-filter LP (& (Union B)) - mf14 = record { f⊆L = subst (λ k → k ⊆ L) (sym *iso) mf16 ; filter1 = mf17 ; filter2 = ? ; proper = ? } + record { owner = owner ; ao = ao ; ox = IsFilter.filter1 mf30 Lq ox p⊆q } where + mf30 : IsFilter {L} {P} LP owner + mf30 = proj1 ( B⊆FX ao ) + mf31 : {p q : Ordinal} → odef (* (& (Union B))) p → odef (* (& (Union B))) q → odef L (& ((* p) ∩ (* q))) → odef (* (& (Union B))) (& ((* p) ∩ (* q))) + mf31 {p} {q} bp bq Lpq with subst (λ k → odef k p ) *iso bp | subst (λ k → odef k q ) *iso bq + ... | record { owner = bp ; ao = Bbp ; ox = bbp } | record { owner = bq ; ao = Bbq ; ox = bbq } + with OB (subst (λ k → odef B k) (sym &iso) Bbp) (subst (λ k → odef B k) (sym &iso) Bbq) + ... | tri< bp⊂bq ¬b ¬c = ? + ... | tri≈ ¬a bq=bp ¬c = ? + ... | tri> ¬a ¬b bq⊂bp = ? + mf14 : IsFilter LP (& (Union B)) + mf14 = record { f⊆L = subst (λ k → k ⊆ L) (sym *iso) mf16 ; filter1 = mf17 ; filter2 = mf31 ; proper = ? } mf15 : filter F ⊆ Union B - mf15 {x} Fx = record { owner = ? ; ao = ? ; ox = subst (λ k → odef k x) (sym *iso) Fx } + mf15 {x} Fx = record { owner = & mf20 ; ao = mf18 ; ox = subst (λ k → odef k x) (sym *iso) (mf22 Fx) } where + mf22 : odef (filter F) x → odef mf20 x + mf22 Fx = subst (λ k → odef k x) *iso ( proj2 (B⊆FX mf18) Fx ) mf13 : odef FX (& (Union B)) mf13 = ⟪ mf14 , subst (λ k → filter F ⊆ k ) (sym *iso) mf15 ⟫ mx : Maximal FX mx = Zorn-lemma (∈∅< FX∋F) SUP⊆ - imf : is-filter {L} {P} LP (& (Maximal.maximal mx)) + imf : IsFilter {L} {P} LP (& (Maximal.maximal mx)) imf = proj1 (Maximal.as mx) mf00 : (* (& (Maximal.maximal mx))) ⊆ L - mf00 = is-filter.f⊆L imf + mf00 = IsFilter.f⊆L imf mf01 : { p q : HOD } → L ∋ q → (* (& (Maximal.maximal mx))) ∋ p → p ⊆ q → (* (& (Maximal.maximal mx))) ∋ q - mf01 {p} {q} Lq Fq p⊆q = is-filter.filter1 imf Lq Fq + mf01 {p} {q} Lq Fq p⊆q = IsFilter.filter1 imf Lq Fq (λ {x} lt → subst (λ k → odef k x) (sym *iso) ( p⊆q (subst (λ k → odef k x) *iso lt ) )) mf02 : { p q : HOD } → (* (& (Maximal.maximal mx))) ∋ p → (* (& (Maximal.maximal mx))) ∋ q → L ∋ (p ∩ q) → (* (& (Maximal.maximal mx))) ∋ (p ∩ q) mf02 {p} {q} Fp Fq Lpq = subst₂ (λ j k → odef (* (& (Maximal.maximal mx))) (& (j ∩ k ))) *iso *iso ( - is-filter.filter2 imf Fp Fq (subst₂ (λ j k → odef L (& (j ∩ k ))) (sym *iso) (sym *iso) Lpq )) + IsFilter.filter2 imf Fp Fq (subst₂ (λ j k → odef L (& (j ∩ k ))) (sym *iso) (sym *iso) Lpq )) mf : Filter {L} {P} LP mf = record { filter = * (& (Maximal.maximal mx)) ; f⊆L = mf00 ; filter1 = mf01