Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 742:de9d9c70a0d7
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 21 Jul 2022 04:18:12 +0900 |
parents | adbe43c07ce7 |
children | 71556e611842 |
files | src/zorn.agda |
diffstat | 1 files changed, 7 insertions(+), 5 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Thu Jul 21 03:56:54 2022 +0900 +++ b/src/zorn.agda Thu Jul 21 04:18:12 2022 +0900 @@ -298,8 +298,8 @@ initial : {y : Ordinal } → odef chain y → * init ≤ * y f-next : {a : Ordinal } → odef chain a → odef chain (f a) f-total : IsTotalOrderSet chain - sup=u : {b : Ordinal} → {ab : odef A b} → b o< z → IsSup A chain ab → supf b ≡ b - order : {sup1 b z1 : Ordinal} → b o< z → sup1 o< b → FClosure A f (supf sup1) z1 → z1 << supf b + sup=u : {b : Ordinal} → {ab : odef A b} → b o< z → IsSup A chain ab → supf b ≡ b + order : {b sup1 z1 : Ordinal} → b o< z → sup1 o< b → FClosure A f (supf sup1) z1 → z1 << supf b record ZChain1 ( A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {init : Ordinal} (ay : odef A init) (zc : ZChain A f mf ay (& A)) ( z : Ordinal ) : Set (Level.suc n) where @@ -310,6 +310,8 @@ → HasPrev A (UnionCF A f mf ay (ZChain.supf zc) z) ab f ∨ IsSup A (UnionCF A f mf ay (ZChain.supf zc) z) ab → * a < * b → odef ((UnionCF A f mf ay (ZChain.supf zc) z)) b fcy<sup : {u w : Ordinal } → u o< z → FClosure A f init w → w << (ZChain.supf zc) u + sup=u : {b : Ordinal} → {ab : odef A b} → b o< z → IsSup A (UnionCF A f mf ay (ZChain.supf zc) (osuc b)) ab → (ZChain.supf zc) b ≡ b + order : {b sup1 z1 : Ordinal} → b o< z → sup1 o< b → FClosure A f ((ZChain.supf zc) sup1) z1 → z1 << (ZChain.supf zc) b record Maximal ( A : HOD ) : Set (Level.suc n) where field @@ -495,10 +497,10 @@ m07 : {z : Ordinal} → FClosure A f y z → z << ZChain.supf zc b m07 {z} fc = ZChain1.fcy<sup (prev (osuc b) ob<x) <-osuc fc m08 : {sup1 z1 : Ordinal} → sup1 o< b → FClosure A f (ZChain.supf zc sup1) z1 → z1 << ZChain.supf zc b - m08 = ? + m08 {sup1} {z1} s<b fc = ZChain1.order (prev (osuc b) ob<x) <-osuc s<b fc m05 : b ≡ ZChain.supf zc b - m05 = sym (ZChain.sup=u zc {_} {ab} ? - record { x<sup = λ lt → IsSup.x<sup is-sup (chain-mono2 x (o<→≤ ob<x) o≤-refl ? )} ) -- ZChain on x + m05 = sym (ZChain1.sup=u (prev (osuc b) ob<x) {_} {ab} <-osuc + record { x<sup = λ lt → IsSup.x<sup is-sup (chain-mono2 x (o<→≤ ob<x) o≤-refl lt )} ) -- ZChain on x m06 : ChainP A f mf ay (ZChain.supf zc) b b m06 = record { fcy<sup = m07 ; csupz = subst (λ k → FClosure A f k b ) m05 (init ab) ; order = m08 } m04 : odef (UnionCF A f mf ay (ZChain.supf zc) (osuc b)) b