Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 344:e0916a632971
possible order restriction makes ω ZFSet
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 13 Jul 2020 14:45:57 +0900 |
parents | 34e71402d579 |
children | f895642a8460 |
files | OD.agda |
diffstat | 1 files changed, 7 insertions(+), 17 deletions(-) [+] |
line wrap: on
line diff
--- a/OD.agda Mon Jul 13 14:30:37 2020 +0900 +++ b/OD.agda Mon Jul 13 14:45:57 2020 +0900 @@ -106,7 +106,7 @@ postulate odAxiom : ODAxiom open ODAxiom odAxiom --- possible restriction +-- possible order restriction hod-ord< : {x : HOD } → Set n hod-ord< {x} = od→ord x o< next (odmax x) @@ -237,6 +237,12 @@ lemmab1 : od→ord (x , x) o< next ( odmax (x , x)) lemmab1 = ho< +pair<y : {x y : HOD } → y ∋ x → od→ord (x , x) o< osuc (od→ord y) +pair<y {x} {y} y∋x = ⊆→o≤ lemma where + lemma : {z : Ordinal} → def (od (x , x)) z → def (od y) z + lemma (case1 refl) = y∋x + lemma (case2 refl) = y∋x + -- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) -- postulate f-extensionality : { n : Level} → Relation.Binary.PropositionalEquality.Extensionality n (suc n) @@ -259,12 +265,6 @@ od⊆→o≤ {x} {y} lt = ⊆→o≤ {x} {y} (λ {z} x>z → subst (λ k → def (od y) k ) diso (incl lt (subst (λ k → def (od x) k ) (sym diso) x>z ))) -- if we have od→ord (x , x) ≡ osuc (od→ord x), ⊆→o≤ → c<→o< -pair<y : {x y : HOD } → y ∋ x → od→ord (x , x) o< osuc (od→ord y) -pair<y {x} {y} y∋x = ⊆→o≤ lemma where - lemma : {z : Ordinal} → def (od (x , x)) z → def (od y) z - lemma (case1 refl) = y∋x - lemma (case2 refl) = y∋x - ⊆→o≤→c<→o< : ({x : HOD} → od→ord (x , x) ≡ osuc (od→ord x) ) → ({y z : HOD } → ({x : Ordinal} → def (od y) x → def (od z) x ) → od→ord y o< osuc (od→ord z) ) → {x y : HOD } → def (od y) ( od→ord x ) → od→ord x o< od→ord y @@ -394,14 +394,6 @@ lemma (isuc {y} x) = lemma2 where lemma0 : y o< next o∅ lemma0 = lemma x - lemma3 : odef (u y ) y - lemma3 = FExists _ (λ {z} t not → not (od→ord (ord→od y , ord→od y)) record { proj1 = case2 refl ; proj2 = lemma4 }) (λ not → not y (infinite-d y)) where - lemma4 : def (od (ord→od (od→ord (ord→od y , ord→od y)))) y - lemma4 = subst₂ ( λ j k → def (od j) k ) (sym oiso) diso (case1 refl) - lemma5 : y o< odmax (u y) - lemma5 = <odmax (u y) lemma3 - lemma6 : y o< odmax (ord→od y , (ord→od y , ord→od y)) - lemma6 = <odmax (ord→od y , (ord→od y , ord→od y)) (subst ( λ k → def (od (ord→od y , (ord→od y , ord→od y))) k ) diso (case1 refl)) lemma8 : od→ord (ord→od y , ord→od y) o< next (odmax (ord→od y , ord→od y)) lemma8 = ho< --- (x,y) < next (omax x y) < next (osuc y) = next y @@ -409,8 +401,6 @@ lemmaa {x} {y} x<y = subst (λ k → od→ord (x , y) o< k ) (sym nexto≡) (subst (λ k → od→ord (x , y) o< next k ) (sym (omax< _ _ x<y)) ho< ) lemma81 : od→ord (ord→od y , ord→od y) o< next (od→ord (ord→od y)) lemma81 = nexto=n (subst (λ k → od→ord (ord→od y , ord→od y) o< k ) (cong (λ k → next k) (omxx _)) lemma8) - lemma91 : od→ord (ord→od y) o< od→ord (ord→od y , ord→od y) - lemma91 = c<→o< (case1 refl) lemma9 : od→ord (ord→od y , (ord→od y , ord→od y)) o< next (od→ord (ord→od y , ord→od y)) lemma9 = lemmaa (c<→o< (case1 refl)) lemma71 : od→ord (ord→od y , (ord→od y , ord→od y)) o< next (od→ord (ord→od y))