Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 993:e11c244d7eac
SZ1 done
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 17 Nov 2022 02:33:06 +0900 |
parents | 4aaecae58da5 |
children | a15f1cddf4c6 |
files | src/zorn.agda |
diffstat | 1 files changed, 6 insertions(+), 10 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Thu Nov 17 02:22:39 2022 +0900 +++ b/src/zorn.agda Thu Nov 17 02:33:06 2022 +0900 @@ -664,8 +664,8 @@ -- SZ1 : ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) (mf< : <-monotonic-f A f) - {init : Ordinal} (ay : odef A init) (zc : ZChain A f mf ay (& A)) (x : Ordinal) → ZChain1 A f mf ay zc x - SZ1 f mf mf< {y} ay zc x = ? where + {init : Ordinal} (ay : odef A init) (zc : ZChain A f mf ay (& A)) (x : Ordinal) → x o≤ & A → ZChain1 A f mf ay zc x + SZ1 f mf mf< {y} ay zc x x≤A = zc1 x x≤A where chain-mono1 : {a b c : Ordinal} → a o≤ b → odef (UnionCF A f mf ay (ZChain.supf zc) a) c → odef (UnionCF A f mf ay (ZChain.supf zc) b) c chain-mono1 {a} {b} {c} a≤b = chain-mono f mf ay (ZChain.supf zc) (ZChain.supf-mono zc) a≤b @@ -712,8 +712,8 @@ ... | case1 eq = case1 (subst₂ (λ j k → j ≡ k ) refl (sym (ZChain.supf-is-minsup zc (o<→≤ b<z)) ) eq ) ... | case2 lt = case2 (subst₂ (λ j k → j < * k ) refl (sym (ZChain.supf-is-minsup zc (o<→≤ b<z) )) lt ) - zc1 : (x : Ordinal ) → x o< & A → ZChain1 A f mf ay zc x - zc1 x x<A with Oprev-p x + zc1 : (x : Ordinal ) → x o≤ & A → ZChain1 A f mf ay zc x + zc1 x x≤A with Oprev-p x ... | yes op = record { is-max = is-max ; order = order } where px = Oprev.oprev op is-max : {a : Ordinal} {b : Ordinal} → odef (UnionCF A f mf ay supf x) a → @@ -739,8 +739,6 @@ m06 : ChainP A f mf ay supf b m06 = record { fcy<sup = m08 ; order = m09 ; supu=u = m05 } ... | case1 sb=sx = ⊥-elim (<-irr (case1 (cong (*) m10)) (proj1 (mf< (supf b) (ZChain.asupf zc)))) where - x≤A : x o≤ & A - x≤A = o<→≤ x<A m17 : MinSUP A (UnionCF A f mf ay supf x) -- supf z o< supf ( supf x ) m17 = ZChain.minsup zc x≤A m18 : supf x ≡ MinSUP.sup m17 @@ -779,8 +777,6 @@ m06 : ChainP A f mf ay supf b m06 = record { fcy<sup = m07 ; order = m08 ; supu=u = m05 } ... | case1 sb=sx = ⊥-elim (<-irr (case1 (cong (*) m10)) (proj1 (mf< (supf b) (ZChain.asupf zc)))) where - x≤A : x o≤ & A - x≤A = o<→≤ x<A m17 : MinSUP A (UnionCF A f mf ay supf x) -- supf z o< supf ( supf x ) m17 = ZChain.minsup zc x≤A m18 : supf x ≡ MinSUP.sup m17 @@ -1400,13 +1396,13 @@ z10 : {a b : Ordinal } → (ca : odef chain a ) → b o< (& A) → (ab : odef A b ) → HasPrev A chain f b ∨ IsSUP A (UnionCF A f mf as0 (ZChain.supf zc) b) ab → * a < * b → odef chain b - z10 = ZChain1.is-max (SZ1 f mf mf< as0 zc (& A) ) + z10 = ZChain1.is-max (SZ1 f mf mf< as0 zc (& A) o≤-refl ) z22 : sp o< & A z22 = z09 asp z12 : odef chain sp z12 with o≡? (& s) sp ... | yes eq = subst (λ k → odef chain k) eq ( ZChain.chain∋init zc ) - ... | no ne = ZChain1.is-max (SZ1 f mf mf< as0 zc (& A)) {& s} {sp} ( ZChain.chain∋init zc ) (z09 asp) asp (case2 z19 ) z13 where + ... | no ne = ZChain1.is-max (SZ1 f mf mf< as0 zc (& A) o≤-refl) {& s} {sp} ( ZChain.chain∋init zc ) (z09 asp) asp (case2 z19 ) z13 where z13 : * (& s) < * sp z13 with MinSUP.x≤sup sp1 ( ZChain.chain∋init zc ) ... | case1 eq = ⊥-elim ( ne eq )