Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 14:e11e95d5ddee
separete constructible set
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 14 May 2019 03:38:26 +0900 |
parents | 2df90eb0896c |
children | 497152f625ee |
files | constructible-set.agda zf.agda |
diffstat | 2 files changed, 162 insertions(+), 85 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/constructible-set.agda Tue May 14 03:38:26 2019 +0900 @@ -0,0 +1,162 @@ +module constructible-set where + +open import Level +open import zf + +open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ) + +open import Relation.Binary.PropositionalEquality + +data Ordinal {n : Level } : (lv : Nat) → Set n where + Φ : {lv : Nat} → Ordinal {n} lv + T-suc : {lv : Nat} → Ordinal {n} lv → Ordinal lv + ℵ_ : (lv : Nat) → Ordinal (Suc lv) + +data _o<_ {n : Level } : {lx ly : Nat} → Ordinal {n} lx → Ordinal {n} ly → Set n where + l< : {lx ly : Nat } → {x : Ordinal {n} lx } → {y : Ordinal {n} ly } → lx < ly → x o< y + Φ< : {lx : Nat} → {x : Ordinal {n} lx} → Φ {n} {lx} o< T-suc {n} {lx} x + s< : {lx : Nat} → {x y : Ordinal {n} lx} → x o< y → T-suc {n} {lx} x o< T-suc {n} {lx} y + ℵΦ< : {lx : Nat} → {x : Ordinal {n} (Suc lx) } → Φ {n} {Suc lx} o< (ℵ lx) + ℵ< : {lx : Nat} → {x : Ordinal {n} (Suc lx) } → T-suc {n} {Suc lx} x o< (ℵ lx) + +open import Data.Nat.Properties +open import Data.Empty +open import Relation.Nullary + +open import Relation.Binary +open import Relation.Binary.Core + + +nat< : { x y : Nat } → x ≡ y → x < y → ⊥ +nat< {Zero} {Zero} refl () +nat< {Suc x} {.(Suc x)} refl (s≤s t) = nat< {x} {x} refl t + +x≤x : { x : Nat } → x ≤ x +x≤x {Zero} = z≤n +x≤x {Suc x} = s≤s ( x≤x ) + +x<>y : { x y : Nat } → x > y → x < y → ⊥ +x<>y {.(Suc _)} {.(Suc _)} (s≤s lt) (s≤s lt1) = x<>y lt lt1 + +triO> : {n : Level } → {lx ly : Nat} {x : Ordinal {n} lx } { y : Ordinal {n} ly } → ly < lx → x o< y → ⊥ +triO> {n} {lx} {ly} {x} {y} y<x xo<y with <-cmp lx ly +triO> {n} {lx} {ly} {x} {y} y<x xo<y | tri< a ¬b ¬c = ¬c y<x +triO> {n} {lx} {ly} {x} {y} y<x xo<y | tri≈ ¬a b ¬c = ¬c y<x +triO> {n} {lx} {ly} {x} {y} y<x (l< x₁) | tri> ¬a ¬b c = ¬a x₁ +triO> {n} {lx} {ly} {Φ} {T-suc _} y<x Φ< | tri> ¬a ¬b c = ¬b refl +triO> {n} {lx} {ly} {T-suc px} {T-suc py} y<x (s< w) | tri> ¬a ¬b c = triO> y<x w +triO> {n} {lx} {ly} {Φ {u}} {ℵ w} y<x ℵΦ< | tri> ¬a ¬b c = ¬b refl +triO> {n} {lx} {ly} {(T-suc _)} {ℵ u} y<x ℵ< | tri> ¬a ¬b c = ¬b refl + +trio! : {n : Level } → {lv : Nat} → {x : Ordinal {n} lv } → x o< x → ⊥ +trio! {n} {lx} {x} (l< y) = nat< refl y +trio! {n} {lx} {T-suc y} (s< t) = trio! t + +trio<> : {n : Level } → {lx : Nat} {x : Ordinal {n} lx } { y : Ordinal {n} lx } → y o< x → x o< y → ⊥ +trio<> {n} {lx} {x} {y} (l< lt) _ = nat< refl lt +trio<> {n} {lx} {x} {y} _ (l< lt) = nat< refl lt +trio<> {n} {lx} {.(T-suc _)} {.(T-suc _)} (s< s) (s< t) = + trio<> s t + +trio<≡ : {n : Level } → {lx : Nat} {x : Ordinal {n} lx } { y : Ordinal {n} lx } → x ≡ y → x o< y → ⊥ +trio<≡ refl = trio! + +trio>≡ : {n : Level } → {lx : Nat} {x : Ordinal {n} lx } { y : Ordinal {n} lx } → x ≡ y → y o< x → ⊥ +trio>≡ refl = trio! + +triO : {n : Level } → {lx ly : Nat} → Ordinal {n} lx → Ordinal {n} ly → Tri (lx < ly) ( lx ≡ ly ) ( lx > ly ) +triO {n} {lx} {ly} x y = <-cmp lx ly + +triOonSameLevel : {n : Level } → {lx : Nat} → Trichotomous _≡_ ( _o<_ {n} {lx} {lx} ) +triOonSameLevel {n} {lv} Φ Φ = tri≈ trio! refl trio! +triOonSameLevel {n} {Suc lv} (ℵ lv) (ℵ lv) = tri≈ trio! refl trio! +triOonSameLevel {n} {lv} Φ (T-suc y) = tri< Φ< (λ ()) ( λ lt → trio<> lt Φ< ) +triOonSameLevel {n} {.(Suc lv)} Φ (ℵ lv) = tri< (ℵΦ< {n} {lv} {Φ} ) (λ ()) ( λ lt → trio<> lt ((ℵΦ< {n} {lv} {Φ} )) ) +triOonSameLevel {n} {Suc lv} (ℵ lv) Φ = tri> ( λ lt → trio<> lt (ℵΦ< {n} {lv} {Φ} ) ) (λ ()) (ℵΦ< {n} {lv} {Φ} ) +triOonSameLevel {n} {Suc lv} (ℵ lv) (T-suc y) = tri> ( λ lt → trio<> lt (ℵ< {n} {lv} {y} ) ) (λ ()) (ℵ< {n} {lv} {y} ) +triOonSameLevel {n} {lv} (T-suc x) Φ = tri> (λ lt → trio<> lt Φ<) (λ ()) Φ< +triOonSameLevel {n} {.(Suc lv)} (T-suc x) (ℵ lv) = tri< ℵ< (λ ()) (λ lt → trio<> lt ℵ< ) +triOonSameLevel {n} {lv} (T-suc x) (T-suc y) with triOonSameLevel x y +triOonSameLevel {n} {lv} (T-suc x) (T-suc y) | tri< a ¬b ¬c = tri< (s< a) (λ tx=ty → trio<≡ tx=ty (s< a) ) ( λ lt → trio<> lt (s< a) ) +triOonSameLevel {n} {lv} (T-suc x) (T-suc x) | tri≈ ¬a refl ¬c = tri≈ trio! refl trio! +triOonSameLevel {n} {lv} (T-suc x) (T-suc y) | tri> ¬a ¬b c = tri> ( λ lt → trio<> lt (s< c) ) (λ tx=ty → trio>≡ tx=ty (s< c) ) (s< c) + + +max : (x y : Nat) → Nat +max Zero Zero = Zero +max Zero (Suc x) = (Suc x) +max (Suc x) Zero = (Suc x) +max (Suc x) (Suc y) = Suc ( max x y ) + +lvconv : { lx ly : Nat } → lx > ly → lx ≡ (max lx ly) +lvconv {Zero} {Zero} () +lvconv {Zero} {Suc ly} () +lvconv {Suc lx} {Zero} (s≤s lt) = refl +lvconv {Suc lx} {Suc ly} (s≤s lt) = cong ( λ x → Suc x ) ( lvconv lt ) + +olconv : {n : Level } → { lx ly : Nat } → Ordinal {n} ly → lx < ly → Ordinal {n} (max lx ly) +olconv {n} {lx} {ly} (Φ {x}) lt = Φ +olconv {n} {lx} {ly} (T-suc x) lt = T-suc (olconv x lt) +olconv {n} {lx} {Suc lv} (ℵ lv) lt = {!!} + +maxα : {n : Level } → { lx ly : Nat } → Ordinal {n} lx → Ordinal {n} ly → Ordinal {n} (max lx ly) +maxα x y with triO x y +maxα Φ y | tri< a ¬b ¬c = Φ +maxα (T-suc x) y | tri< a ¬b ¬c = olconv x a +maxα (ℵ lv) y | tri< a ¬b ¬c = {!!} +maxα x y | tri> ¬a ¬b c = {!!} +maxα Φ y | tri≈ ¬a b ¬c = Φ +maxα (T-suc x) y | tri≈ ¬a b ¬c = T-suc {!!} +maxα (ℵ lv) y | tri≈ ¬a b ¬c = {!!} + +-- X' = { x ∈ X | ψ x } ∪ X , Mα = ( ∪ (β < α) Mβ ) ' + +data Constructible {n : Level } {lv : Nat} ( α : Ordinal {n} lv ) : Set (suc n) where + fsub : ( ψ : Ordinal {n} lv → Set n ) → Constructible α + xself : Ordinal {n} lv → Constructible α + +record ConstructibleSet {n : Level } : Set (suc n) where + field + level : Nat + α : Ordinal {n} level + constructible : Constructible α + +open ConstructibleSet + +data _c∋_ {n : Level } : {lv lv' : Nat} {α : Ordinal {n} lv } {α' : Ordinal {n} lv' } → + Constructible {n} {lv} α → Constructible {n} {lv'} α' → Set n where + c> : {lv lv' : Nat} {α : Ordinal {n} lv } {α' : Ordinal {n} lv' } + (ta : Constructible {n} {lv} α ) ( tx : Constructible {n} {lv'} α' ) → α' o< α → ta c∋ tx + xself-fsub : {lv : Nat} {α : Ordinal {n} lv } + (ta : Ordinal {n} lv ) ( ψ : Ordinal {n} lv → Set n ) → _c∋_ {n} {_} {_} {α} {α} (xself ta ) ( fsub ψ) + fsub-fsub : {lv lv' : Nat} {α : Ordinal {n} lv } + ( ψ : Ordinal {n} lv → Set n ) ( ψ₁ : Ordinal {n} lv → Set n ) → + ( ∀ ( x : Ordinal {n} lv ) → ψ x → ψ₁ x ) → _c∋_ {n} {_} {_} {α} {α} ( fsub ψ ) ( fsub ψ₁) + +_∋_ : {n : Level} → (ConstructibleSet {n}) → (ConstructibleSet {n} ) → Set n +a ∋ x = constructible a c∋ constructible x + +data _c≈_ {n : Level } : {lv lv' : Nat} {α : Ordinal {n} lv } {α' : Ordinal {n} lv' } → + Constructible {n} {lv} α → Constructible {n} {lv'} α' → Set n where + crefl : {lv : Nat} {α : Ordinal {n} lv } → _c≈_ {n} {_} {_} {α} {α} (xself α ) (xself α ) + feq : {lv : Nat} {α : Ordinal {n} lv } + → ( ψ : Ordinal {n} lv → Set n ) ( ψ₁ : Ordinal {n} lv → Set n ) + → (∀ ( x : Ordinal {n} lv ) → ψ x ⇔ ψ₁ x ) → _c≈_ {n} {_} {_} {α} {α} ( fsub ψ ) ( fsub ψ₁) + +_≈_ : {n : Level} → (ConstructibleSet {n}) → (ConstructibleSet {n} ) → Set n +a ≈ x = constructible a c≈ constructible x + +ConstructibleSet→ZF : {n : Level } → ZF {suc n} {n} +ConstructibleSet→ZF {n} = record { + ZFSet = ConstructibleSet + ; _∋_ = _∋_ + ; _≈_ = _≈_ + ; ∅ = record { level = Zero ; α = Φ ; constructible = xself Φ } + ; _×_ = {!!} + ; Union = {!!} + ; Power = {!!} + ; Select = {!!} + ; Replace = {!!} + ; infinite = {!!} + ; isZF = {!!} + }
--- a/zf.agda Mon May 13 20:51:45 2019 +0900 +++ b/zf.agda Tue May 14 03:38:26 2019 +0900 @@ -121,88 +121,3 @@ -- russel with Select ( λ x → x ∋ x ) -- ... | s = {!!} -module constructible-set where - - open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ) - - open import Relation.Binary.PropositionalEquality - - data Ordinal {n : Level } : Set n where - Φ : {lv : Nat} → Ordinal {n} lv - T-suc : {lv : Nat} → Ordinal {n} lv → Ordinal lv - ℵ_ : (lv : Nat) → Ordinal (Suc lv) - - data _o<_ {n : Level } : Ordinal {n} → Ordinal {n} → Set n where - l< : {lx ly : Nat } → {x : Ordinal {n} lx } → {y : Ordinal {n} ly } → lx < ly → x o< y - Φ< : {lx : Nat} → {x : Ordinal {n} lx} → Φ {n} {lx} o< T-suc {n} {lx} x - s< : {lx : Nat} → {x : Ordinal {n} lx} → x o< T-suc {n} {lx} x - ℵΦ< : {lx : Nat} → {x : Ordinal {n} lx } → Φ {n} {lx} o< (ℵ lx) - ℵ< : {lx : Nat} → {x : Ordinal {n} lx } → T-suc {n} {lx} x o< (ℵ lx) - - _o≈_ : {n : Level } {lv : Nat } → Rel ( Ordinal {n} lv ) n - _o≈_ = {!!} - - triO : {n : Level } → {lx ly : Nat} → Trichotomous _o≈_ ( _o<_ {n} {lx} {ly} ) - triO {n} {lv} Φ y = {!!} - triO {n} {lv} (T-suc x) y = {!!} - triO {n} {.(Suc lv)} (ℵ lv) y = {!!} - - - max = Data.Nat._⊔_ - - maxα : {n : Level } → { lx ly : Nat } → Ordinal {n} lx → Ordinal {n} ly → Ordinal {n} (max lx ly) - maxα x y with x o< y - ... | t = {!!} - - -- X' = { x ∈ X | ψ x } ∪ X , Mα = ( ∪ (β < α) Mβ ) ' - - data Constructible {n : Level } {lv : Nat} ( α : Ordinal {n} lv ) : Set (suc n) where - fsub : ( ψ : Ordinal {n} lv → Set n ) → Constructible α - xself : Ordinal {n} lv → Constructible α - - record ConstructibleSet {n : Level } : Set (suc n) where - field - level : Nat - α : Ordinal {n} level - constructible : Constructible α - - open ConstructibleSet - - data _c∋_ {n : Level } : {lv lv' : Nat} {α : Ordinal {n} lv } {α' : Ordinal {n} lv' } → - Constructible {n} {lv} α → Constructible {n} {lv'} α' → Set n where - c> : {lv lv' : Nat} {α : Ordinal {n} lv } {α' : Ordinal {n} lv' } - (ta : Constructible {n} {lv} α ) ( tx : Constructible {n} {lv'} α' ) → α' o< α → ta c∋ tx - xself-fsub : {lv : Nat} {α : Ordinal {n} lv } - (ta : Ordinal {n} lv ) ( ψ : Ordinal {n} lv → Set n ) → _c∋_ {n} {_} {_} {α} {α} (xself ta ) ( fsub ψ) - fsub-fsub : {lv lv' : Nat} {α : Ordinal {n} lv } - ( ψ : Ordinal {n} lv → Set n ) ( ψ₁ : Ordinal {n} lv → Set n ) → - ( ∀ ( x : Ordinal {n} lv ) → ψ x → ψ₁ x ) → _c∋_ {n} {_} {_} {α} {α} ( fsub ψ ) ( fsub ψ₁) - - _∋_ : {n : Level} → (ConstructibleSet {n}) → (ConstructibleSet {n} ) → Set n - a ∋ x = constructible a c∋ constructible x - - data _c≈_ {n : Level } : {lv lv' : Nat} {α : Ordinal {n} lv } {α' : Ordinal {n} lv' } → - Constructible {n} {lv} α → Constructible {n} {lv'} α' → Set n where - crefl : {lv : Nat} {α : Ordinal {n} lv } → _c≈_ {n} {_} {_} {α} {α} (xself α ) (xself α ) - feq : {lv : Nat} {α : Ordinal {n} lv } - → ( ψ : Ordinal {n} lv → Set n ) ( ψ₁ : Ordinal {n} lv → Set n ) - → (∀ ( x : Ordinal {n} lv ) → ψ x ⇔ ψ₁ x ) → _c≈_ {n} {_} {_} {α} {α} ( fsub ψ ) ( fsub ψ₁) - - _≈_ : {n : Level} → (ConstructibleSet {n}) → (ConstructibleSet {n} ) → Set n - a ≈ x = constructible a c≈ constructible x - - - ConstructibleSet→ZF : {n : Level } → ZF {suc n} {n} - ConstructibleSet→ZF {n} = record { - ZFSet = ConstructibleSet - ; _∋_ = _∋_ - ; _≈_ = _≈_ - ; ∅ = record { level = Zero ; α = Φ ; constructible = xself Φ } - ; _×_ = {!!} - ; Union = {!!} - ; Power = {!!} - ; Select = {!!} - ; Replace = {!!} - ; infinite = {!!} - ; isZF = {!!} - } where