Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 537:e12add1519ec
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 24 Apr 2022 08:04:42 +0900 |
parents | c43375ade2c5 |
children | 854908eb70f2 |
files | src/zorn.agda |
diffstat | 1 files changed, 37 insertions(+), 14 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Sat Apr 23 18:39:07 2022 +0900 +++ b/src/zorn.agda Sun Apr 24 08:04:42 2022 +0900 @@ -94,6 +94,18 @@ me-elm-refl : (A : HOD) → (x : Element A) → elm (me {A} (d→∋ A (is-elm x))) ≡ elm x me-elm-refl A record { elm = ex ; is-elm = ax } = *iso +-- <-induction : (A : HOD) { ψ : (x : HOD) → A ∋ x → Set (Level.suc n)} +-- → IsPartialOrderSet A +-- → ( {x : HOD } → A ∋ x → ({ y : HOD } → A ∋ y → y < x → ψ y ) → ψ x ) +-- → {x0 x : HOD } → A ∋ x0 → A ∋ x → x0 < x → ψ x +-- <-induction A {ψ} PO ind ax0 ax x0<a = subst (λ k → ψ k ) *iso (<-induction-ord (osuc (& x)) <-osuc ) where +-- -- y < * ox → & y o< ox +-- induction : (ox : Ordinal) → ((oy : Ordinal) → oy o< ox → ψ (* oy)) → ψ (* ox) +-- induction ox prev = ind ( λ {y} lt → subst (λ k → ψ k ) *iso (prev (& y) {!!})) +-- <-induction-ord : (ox : Ordinal) { oy : Ordinal } → oy o< ox → ψ (* oy) +-- <-induction-ord ox {oy} lt = TransFinite {λ oy → ψ (* oy)} induction oy + + open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) -- Don't use Element other than Order, you'll be in a trouble @@ -204,30 +216,39 @@ z01 {a} {b} A∋a A∋b (case1 a=b) b<a = IsStrictPartialOrder.irrefl PO {me A∋b} {me A∋a} (sym a=b) b<a z01 {a} {b} A∋a A∋b (case2 a<b) b<a = IsStrictPartialOrder.irrefl PO {me A∋b} {me A∋b} refl (IsStrictPartialOrder.trans PO {me A∋b} {me A∋a} {me A∋b} b<a a<b) + z07 : {y : Ordinal} → {P : Set n} → odef A y ∧ P → y o< & A + z07 {y} p = subst (λ k → k o< & A) &iso ( c<→o< (subst (λ k → odef A k ) (sym &iso ) (proj1 p ))) s : HOD s = ODC.minimal O A (λ eq → ¬x<0 ( subst (λ k → o∅ o< k ) (=od∅→≡o∅ eq) 0<A )) sa : A ∋ * ( & s ) sa = subst (λ k → odef A (& k) ) (sym *iso) ( ODC.x∋minimal O A (λ eq → ¬x<0 ( subst (λ k → o∅ o< k ) (=od∅→≡o∅ eq) 0<A )) ) HasMaximal : HOD - HasMaximal = record { od = record { def = λ x → odef A x ∧ ( (m : Ordinal) → odef A m → ¬ (* x < * m)) } ; odmax = & A ; <odmax = z07 } where - z07 : {y : Ordinal} → odef A y ∧ ((m : Ordinal) → odef A m → ¬ (* y < * m)) → y o< & A - z07 {y} p = subst (λ k → k o< & A) &iso ( c<→o< (subst (λ k → odef A k ) (sym &iso ) (proj1 p ))) - no-maximum : HasMaximal =h= od∅ → (x : Ordinal) → ((m : Ordinal) → odef A m → odef A x ∧ (¬ (* x < * m) )) → ⊥ - no-maximum nomx x P = ¬x<0 (eq→ nomx {x} {!!} ) + HasMaximal = record { od = record { def = λ x → odef A x ∧ ( (m : Ordinal) → odef A m → ¬ (* x < * m)) } ; odmax = & A ; <odmax = z07 } + no-maximum : HasMaximal =h= od∅ → (x : Ordinal) → odef A x ∧ ((m : Ordinal) → odef A m → odef A x ∧ (¬ (* x < * m) )) → ⊥ + no-maximum nomx x P = ¬x<0 (eq→ nomx {x} ⟪ proj1 P , (λ m ma p → proj2 ( proj2 P m ma ) p ) ⟫ ) Gtx : { x : HOD} → A ∋ x → HOD - Gtx {x} ax = record { od = record { def = λ y → odef A y ∧ (x < (* y)) } ; odmax = & A ; <odmax = {!!} } + Gtx {x} ax = record { od = record { def = λ y → odef A y ∧ (x < (* y)) } ; odmax = & A ; <odmax = z07 } + z08 : ¬ Maximal A → HasMaximal =h= od∅ + z08 nmx = record { eq→ = λ {x} lt → ⊥-elim ( nmx record {maximal = * x ; A∋maximal = subst (λ k → odef A k) (sym &iso) (proj1 lt) + ; ¬maximal<x = λ {y} ay → subst (λ k → ¬ (* x < k)) *iso (proj2 lt (& y) ay) } ) ; eq← = λ {y} lt → ⊥-elim ( ¬x<0 lt )} + x-is-maximal : ¬ Maximal A → {x : Ordinal} → (ax : odef A x) → & (Gtx (subst (λ k → odef A k ) (sym &iso) ax)) ≡ o∅ → (m : Ordinal) → odef A m → odef A x ∧ (¬ (* x < * m)) + x-is-maximal nmx {x} ax nogt m am = ⟪ subst (λ k → odef A k) &iso (subst (λ k → odef A k ) (sym &iso) ax) , ¬x<m ⟫ where + ¬x<m : ¬ (* x < * m) + ¬x<m x<m = ∅< {Gtx (subst (λ k → odef A k ) (sym &iso) ax)} {* m} ⟪ subst (λ k → odef A k) (sym &iso) am , subst (λ k → * x < k ) (cong (*) (sym &iso)) x<m ⟫ (≡o∅→=od∅ nogt) cf : ¬ Maximal A → Ordinal → Ordinal cf nmx x with ODC.∋-p O A (* x) ... | no _ = o∅ ... | yes ax with is-o∅ (& ( Gtx ax )) - ... | yes nogt = ⊥-elim (no-maximum (≡o∅→=od∅ {!!} ) x x-is-maximal ) where -- no larger element, so it is maximal - x-is-maximal : (m : Ordinal) → odef A m → odef A x ∧ (¬ (* x < * m)) - x-is-maximal m am = ⟪ subst (λ k → odef A k) &iso ax , ¬x<m ⟫ where - ¬x<m : ¬ (* x < * m) - ¬x<m x<m = ∅< {Gtx ax} {* m} ⟪ subst (λ k → odef A k) (sym &iso) am , subst (λ k → * x < k ) (cong (*) (sym &iso)) x<m ⟫ (≡o∅→=od∅ nogt) + ... | yes nogt = ⊥-elim (no-maximum (z08 nmx) x ⟪ subst (λ k → odef A k) &iso ax , x-is-maximal nmx (subst (λ k → odef A k ) &iso ax) nogt ⟫ ) -- no larger element, so it is maximal ... | no not = & (ODC.minimal O (Gtx ax) (λ eq → not (=od∅→≡o∅ eq))) + is-cf : (nmx : ¬ Maximal A ) → {x : Ordinal} → odef A x → odef A (cf nmx x) ∧ ( * x < * (cf nmx x) ) + is-cf nmx {x} ax with ODC.∋-p O A (* x) + ... | no not = ⊥-elim ( not (subst (λ k → odef A k ) (sym &iso) ax )) + ... | yes ax with is-o∅ (& ( Gtx ax )) + ... | yes nogt = ⊥-elim (no-maximum (z08 nmx) x ⟪ subst (λ k → odef A k) &iso ax , x-is-maximal nmx (subst (λ k → odef A k ) &iso ax) nogt ⟫ ) + ... | no not = ODC.x∋minimal O (Gtx ax) (λ eq → not (=od∅→≡o∅ eq)) cf-is-<-monotonic : (nmx : ¬ Maximal A ) → (x : Ordinal) → odef A x → ( * x < * (cf nmx x) ) ∧ odef A (cf nmx x ) - cf-is-<-monotonic nmx x ax = ⟪ {!!} , {!!} ⟫ + cf-is-<-monotonic nmx x ax = ⟪ proj2 (is-cf nmx ax ) , proj1 (is-cf nmx ax ) ⟫ cf-is-≤-monotonic : (nmx : ¬ Maximal A ) → ≤-monotonic-f A ( cf nmx ) cf-is-≤-monotonic nmx x ax = ⟪ case2 (proj1 ( cf-is-<-monotonic nmx x ax )) , proj2 ( cf-is-<-monotonic nmx x ax ) ⟫ zsup : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f) → (zc : ZChain A sa f mf supO (& A)) → SUP A (ZChain.chain zc) @@ -237,9 +258,11 @@ → A ∋ * ( & ( SUP.sup (zsup (cf nmx) (cf-is-≤-monotonic nmx) zc ) )) A∋zsup nmx zc = subst (λ k → odef A (& k )) (sym *iso) ( SUP.A∋maximal (zsup (cf nmx) (cf-is-≤-monotonic nmx) zc ) ) z03 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) (zc : ZChain A sa f mf supO (& A)) → f (& ( SUP.sup (zsup f mf zc ))) ≡ & (SUP.sup (zsup f mf zc )) - z03 = {!!} + z03 f mf zc = {!!} z04 : (nmx : ¬ Maximal A ) → (zc : ZChain A sa (cf nmx) (cf-is-≤-monotonic nmx) supO (& A)) → ⊥ - z04 nmx zc = z01 {* (cf nmx c)} {* c} {!!} (A∋zsup nmx zc ) (case1 ( cong (*)( z03 (cf nmx) (cf-is-≤-monotonic nmx ) zc ))) + z04 nmx zc = z01 {* (cf nmx c)} {* c} (subst (λ k → odef A k ) (sym &iso) + (proj1 (is-cf nmx (SUP.A∋maximal (zsup (cf nmx) (cf-is-≤-monotonic nmx) zc ))))) + (A∋zsup nmx zc ) (case1 ( cong (*)( z03 (cf nmx) (cf-is-≤-monotonic nmx ) zc ))) (proj1 (cf-is-<-monotonic nmx c ((subst λ k → odef A k ) &iso (A∋zsup nmx zc )))) where c = & (SUP.sup (zsup (cf nmx) (cf-is-≤-monotonic nmx) zc )) -- ZChain is not compatible with the SUP condition