Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 550:e1a33b1bc16c
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 28 Apr 2022 12:02:10 +0900 |
parents | f007e044b2c6 |
children | 9f24214f4270 |
files | src/zorn.agda |
diffstat | 1 files changed, 8 insertions(+), 8 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Thu Apr 28 11:47:18 2022 +0900 +++ b/src/zorn.agda Thu Apr 28 12:02:10 2022 +0900 @@ -316,13 +316,13 @@ sp1 = sp0 (cf nmx) (cf-is-≤-monotonic nmx) zc c = & (SUP.sup sp1) - 3cases : {x y : Ordinal} → ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) - → (ax : odef A x )→ (ay : odef A y ) - → (zc0 : ZChain A ay f mf supO x ) - → Prev< A (ZChain.chain zc0) ax f - ∨ (supO (& (ZChain.chain zc0)) (subst (λ k → k ⊆ A) (sym *iso) (ZChain.chain⊆A zc0)) (subst IsTotalOrderSet (sym *iso) (ZChain.f-total zc0)) ≡ x) - ∨ ( ( z : Ordinal) → odef (ZChain.chain zc0) z → ¬ ( * z < * x )) - 3cases {x} {y} f mf ax ay zc0 = {!!} + -- 3cases : {x y : Ordinal} → ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) + -- → (ax : odef A x )→ (ay : odef A y ) + -- → (zc0 : ZChain A ay f mf supO x ) + -- → Prev< A (ZChain.chain zc0) ax f + -- ∨ (supO (& (ZChain.chain zc0)) (subst (λ k → k ⊆ A) (sym *iso) (ZChain.chain⊆A zc0)) (subst IsTotalOrderSet (sym *iso) (ZChain.f-total zc0)) ≡ x) + -- ∨ ( ( z : Ordinal) → odef (ZChain.chain zc0) z → ¬ ( * z < * x )) + -- 3cases {x} {y} f mf ax ay zc0 = {!!} -- Union of ZFChain UZFChain : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → (B : Ordinal) → ( (z : Ordinal) → z o< B → {y : Ordinal} → (ya : odef A y) → ZChain A ya f mf supO z ) → HOD @@ -395,7 +395,7 @@ zc6 : IsTotalOrderSet zc5 zc6 = record { isEquivalence = IsStrictPartialOrder.isEquivalence IPO ; trans = λ {x} {y} {z} → IsStrictPartialOrder.trans IPO {x} {y} {z} ; compare = cmp } - ... | case2 ¬fy<x with ODC.p∨¬p O ( x ≡ & ( SUP.sup ( supP ( ZChain.chain zc0 ) {!!} {!!} ) )) + ... | case2 ¬fy<x with ODC.p∨¬p O ( x ≡ & ( SUP.sup ( supP ( ZChain.chain zc0 ) (ZChain.chain⊆A zc0 ) (ZChain.f-total zc0) ) )) ... | case1 x=sup = {!!} -- x is sup ... | case2 ¬x=sup = record { chain = ZChain.chain zc0 ; chain⊆A = ZChain.chain⊆A zc0 ; f-total = ZChain.f-total zc0 ; f-next = {!!} ; f-immediate = {!!} ; chain∋x = {!!} ; is-max = {!!} } -- no extention