Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1152:e1c6719a8c38
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 18 Jan 2023 09:30:26 +0900 |
parents | 8a071bf52407 |
children | 5eb972738f9b |
files | src/Topology.agda |
diffstat | 1 files changed, 32 insertions(+), 28 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Topology.agda Wed Jan 18 01:43:24 2023 +0900 +++ b/src/Topology.agda Wed Jan 18 09:30:26 2023 +0900 @@ -113,8 +113,8 @@ -- Pp : {x : HOD} → {lx : L ∋ x } → P ∋ p lx -- px : {x : HOD} → {lx : L ∋ x } → p lx ∋ x -GeneratedTopogy : (L P : HOD) → IsSubBase L P → Topology L -GeneratedTopogy L P isb = record { OS = SO L P ; OS⊆PL = tp00 +InducedTopology : (L P : HOD) → IsSubBase L P → Topology L +InducedTopology L P isb = record { OS = SO L P ; OS⊆PL = tp00 ; o∪ = tp02 ; o∩ = tp01 ; OS∋od∅ = tp03 } where tp03 : {x : Ordinal } → odef (* (& od∅)) x → Base L P (& od∅) x tp03 {x} 0x = ⊥-elim ( empty (* x) ( subst₂ (λ j k → odef j k ) *iso (sym &iso) 0x )) @@ -199,9 +199,9 @@ tp00 {y} bpq = odef< ( pbase⊆PL TP TQ bpq ) ProductTopology : {P Q : HOD} → Topology P → Topology Q → Topology (ZFP P Q) -ProductTopology {P} {Q} TP TQ = GeneratedTopogy (ZFP P Q) (pbase TP TQ) record { P⊆PL = pbase⊆PL TP TQ } +ProductTopology {P} {Q} TP TQ = InducedTopology (ZFP P Q) (pbase TP TQ) record { P⊆PL = pbase⊆PL TP TQ } --- covers +-- covers ( q ⊆ Union P ) record _covers_ ( P q : HOD ) : Set n where field @@ -273,7 +273,7 @@ fip05 {w} xw = proj1 ( subst (λ k → odef k w) (trans (cong (*) x=ψz) *iso ) xw ) -- -- X covres L means Intersection of (CX X) contains nothing - -- then some finite Intersection of (CX X) contains nothing ( contraposition of FIP ) + -- then some finite Intersection of (CX X) contains nothing ( contraposition of FIP .i.e. CFIP) -- it means there is a finite cover -- record CFIP (X x : Ordinal) : Set n where @@ -309,7 +309,7 @@ fip09 : {z : Ordinal } → odef L z → ¬ ( {y : Ordinal } → (Xy : odef (* X) y) → ¬ ( odef (* y) z )) fip09 {z} Lz nc = nc ( P∋cover oc Lz ) (subst (λ k → odef (* (cover oc Lz)) k) refl (isCover oc _ )) cex : {X : Ordinal } → * X ⊆ OS top → * X covers L → Ordinal - cex {X} ox oc = & ( ODC.minimal O (Cex X) (fip00 ox oc)) + cex {X} ox oc = & ( ODC.minimal O (Cex X) (fip00 ox oc)) -- this will be the finite cover CXfip : {X : Ordinal } → (ox : * X ⊆ OS top) → (oc : * X covers L) → CFIP X (cex ox oc) CXfip {X} ox oc = ODC.x∋minimal O (Cex X) (fip00 ox oc) -- @@ -328,23 +328,22 @@ fip34 {w} wz1 = os⊆L top (subst (λ k → odef (OS top) k) (sym &iso) (xo az1)) wz1 fip33 : z1 ≡ w fip33 = begin - z1 ≡⟨ sym &iso ⟩ - & (* z1) ≡⟨ cong (&) (sym (L\Lx=x fip34 )) ⟩ - & (L \ ( L \ * z1)) ≡⟨ cong (λ k → & ( L \ k )) (sym *iso) ⟩ - & (L \ * (& ( L \ * z1))) ≡⟨ cong (λ k → & ( L \ * k )) (sym x=ψz1) ⟩ - & (L \ * z) ≡⟨ sym x=ψz ⟩ + z1 ≡⟨ sym &iso ⟩ + & (* z1) ≡⟨ cong (&) (sym (L\Lx=x fip34 )) ⟩ + & (L \ ( L \ * z1)) ≡⟨ cong (λ k → & ( L \ k )) (sym *iso) ⟩ + & (L \ * (& ( L \ * z1))) ≡⟨ cong (λ k → & ( L \ * k )) (sym x=ψz1) ⟩ + & (L \ * z) ≡⟨ sym x=ψz ⟩ w ∎ where open ≡-Reasoning fip31 : Finite-∪ (* X) (& (Replace' (* x) (λ z xz → L \ z))) fip31 = fin-e (subst (λ k → k ⊆ * X ) (sym *iso) fip32 ) fip30 x yz x⊆cs (g∩ {y} {z} sy sz) = fip35 where fip35 : Finite-∪ (* X) (& (Replace' (* x) (λ z₁ xz → L \ z₁))) - fip35 = subst (λ k → Finite-∪ (* X) k) + fip35 = subst (λ k → Finite-∪ (* X) k) (cong (&) (subst (λ k → (k ∪ k ) ≡ (Replace' (* x) (λ z₁ xz → L \ z₁)) ) (sym *iso) x∪x≡x )) ( fin-∪ (fip30 _ _ x⊆cs sy) (fip30 _ _ x⊆cs sz) ) -- is also a cover isCover1 : {X : Ordinal} (xo : * X ⊆ OS top) (xcp : * X covers L) → * (finCover xo xcp) covers L - isCover1 {X} xo xcp = subst₂ (λ j k → j covers k ) (sym *iso) (subst (λ k → L \ k ≡ L) (sym o∅≡od∅) L\0=L) + isCover1 {X} xo xcp = subst₂ (λ j k → j covers k ) (sym *iso) (subst (λ k → L \ k ≡ L) (sym o∅≡od∅) L\0=L) ( fip40 (cex xo xcp) o∅ (CFIP.is-CS (CXfip xo xcp)) (CFIP.sx (CXfip xo xcp))) where - -- record { cover = λ {x} Lx → ? ; P∋cover = ? ; isCover = ? } fip45 : {L a b : HOD} → (L \ (a ∩ b)) ⊆ ( (L \ a) ∪ (L \ b)) fip45 {L} {a} {b} {x} Lab with ODC.∋-p O b (* x) ... | yes bx = case1 ⟪ proj1 Lab , (λ ax → proj2 Lab ⟪ ax , subst (λ k → odef b k) &iso bx ⟫ ) ⟫ @@ -359,24 +358,24 @@ fip46 {x} Lab with fip45 {L} {a} {b} Lab ... | case1 La = P∋cover ca La ... | case2 Lb = P∋cover cb Lb - fip47 : {x : Ordinal} (lt : odef (L \ (a ∩ b)) x) → odef (* (fip44 lt)) x + fip47 : {x : Ordinal} (lt : odef (L \ (a ∩ b)) x) → odef (* (fip44 lt)) x fip47 {x} Lab with fip45 {L} {a} {b} Lab ... | case1 La = isCover ca La ... | case2 Lb = isCover cb Lb fip40 : ( x y : Ordinal ) → * x ⊆ Replace' (* X) (λ z xz → L \ z) → Subbase (* x) y → (Replace' (* x) (λ z xz → L \ z )) covers (L \ * y ) - fip40 x .(& (* _ ∩ * _)) x⊆r (g∩ {a} {b} sa sb) = subst (λ k → (Replace' (* x) (λ z xz → L \ z)) covers ( L \ k ) ) (sym *iso) + fip40 x .(& (* _ ∩ * _)) x⊆r (g∩ {a} {b} sa sb) = subst (λ k → (Replace' (* x) (λ z xz → L \ z)) covers ( L \ k ) ) (sym *iso) ( fip43 {_} {L} {* a} {* b} fip41 fip42 ) where fip41 : Replace' (* x) (λ z xz → L \ z) covers (L \ * a) - fip41 = fip40 x a x⊆r sa + fip41 = fip40 x a x⊆r sa fip42 : Replace' (* x) (λ z xz → L \ z) covers (L \ * b) - fip42 = fip40 x b x⊆r sb + fip42 = fip40 x b x⊆r sb fip40 x y x⊆r (gi sb) with x⊆r sb ... | record { z = z ; az = az ; x=ψz = x=ψz } = record { cover = fip51 ; P∋cover = fip53 ; isCover = fip50 }where - fip51 : {w : Ordinal} (Lyw : odef (L \ * y) w) → Ordinal - fip51 {w} Lyw = z - fip52 : {w : Ordinal} (Lyw : odef (L \ * y) w) → odef (* X) z - fip52 {w} Lyw = az + fip51 : {w : Ordinal} (Lyw : odef (L \ * y) w) → Ordinal + fip51 {w} Lyw = z + fip52 : {w : Ordinal} (Lyw : odef (L \ * y) w) → odef (* X) z + fip52 {w} Lyw = az fip55 : * z ⊆ L fip55 {w} wz1 = os⊆L top (subst (λ k → odef (OS top) k) (sym &iso) (xo az)) wz1 fip56 : * z ≡ L \ * y @@ -385,16 +384,16 @@ L \ ( L \ * z ) ≡⟨ cong (λ k → L \ k) (sym *iso) ⟩ L \ * ( & ( L \ * z )) ≡⟨ cong (λ k → L \ * k) (sym x=ψz) ⟩ L \ * y ∎ where open ≡-Reasoning - fip53 : {w : Ordinal} (Lyw : odef (L \ * y) w) → odef (Replace' (* x) (λ z₁ xz → L \ z₁)) z + fip53 : {w : Ordinal} (Lyw : odef (L \ * y) w) → odef (Replace' (* x) (λ z₁ xz → L \ z₁)) z fip53 {w} Lyw = record { z = _ ; az = sb ; x=ψz = fip54 } where fip54 : z ≡ & ( L \ * y ) fip54 = begin z ≡⟨ sym &iso ⟩ & (* z) ≡⟨ cong (&) fip56 ⟩ - & (L \ * y ) + & (L \ * y ) ∎ where open ≡-Reasoning - fip50 : {w : Ordinal} (Lyw : odef (L \ * y) w) → odef (* z) w - fip50 {w} Lyw = subst (λ k → odef k w ) (sym fip56) Lyw + fip50 : {w : Ordinal} (Lyw : odef (L \ * y) w) → odef (* z) w + fip50 {w} Lyw = subst (λ k → odef k w ) (sym fip56) Lyw @@ -422,10 +421,15 @@ UFLP→FIP {P} TP {L} LP uflp = record { limit = uf00 ; is-limit = {!!} } where fip : {X : Ordinal} → * X ⊆ CS TP → Set n fip {X} CSX = {C x : Ordinal} → * C ⊆ * X → Subbase (* C) x → o∅ o< x + N : {X : Ordinal} → (CSX : * X ⊆ CS TP ) → fip {X} CSX → HOD + N {X} CSX fip = record { od = record { def = λ x → Base L P X x ∧ ( o∅ o< x ) } ; odmax = ? ; <odmax = ? } F : {X : Ordinal} → (CSX : * X ⊆ CS TP ) → fip {X} CSX → Filter {L} {P} LP - F = ? + F {X} CSX fip = record { filter = N CSX fip ; f⊆L = ? ; filter1 = ? ; filter2 = ? } uf00 : {X : Ordinal} → (CSX : * X ⊆ CS TP) → fip {X} CSX → Ordinal - uf00 {X} CSX fip = UFLP.limit ( uflp (F CSX fip) ? (F→ultra LP ? ? (F CSX fip) ? ? ? ) ) + uf00 {X} CSX fip = UFLP.limit ( uflp + ( MaximumFilter.mf (F→Maximum {L} {P} LP ? ? (F CSX ?) ? ? ? )) + ? + (F→ultra LP ? ? (F CSX fip) ? ? ? ) ) -- some day FIP→UFLP : Set (suc (suc n))