Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 944:e1d727251e25
bad with trio< o
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 30 Oct 2022 22:53:22 +0900 |
parents | df68bb333cd0 |
children | da156642b8d0 |
files | src/zorn.agda |
diffstat | 1 files changed, 23 insertions(+), 20 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Sun Oct 30 18:19:33 2022 +0900 +++ b/src/zorn.agda Sun Oct 30 22:53:22 2022 +0900 @@ -1480,9 +1480,7 @@ z30 : * mc < * (cf nmx mc) z30 = proj1 (cf-is-<-monotonic nmx mc (MinSUP.asm msp1)) z26 : (* (cf nmx mc) ≡ * mc) ∨ (* (cf nmx mc) < * mc) - z26 with MinSUP.x<sup msp1 ? - ... | case1 eq = case1 (cong (*) eq) - ... | case2 lt = case2 lt + z26 = ? is-sup : IsSup A (UnionCF A (cf nmx) (cf-is-≤-monotonic nmx) as0 (ZChain.supf zc) d) (MinSUP.asm spd) is-sup = record { x<sup = z22 } where @@ -1496,33 +1494,38 @@ -- supf u o< spuf c → order not-hasprev : ¬ HasPrev A (UnionCF A (cf nmx) (cf-is-≤-monotonic nmx) as0 (ZChain.supf zc) d) d (cf nmx) - not-hasprev hp = ⊥-elim (z29 {mc} {asc} spd hp ) where + not-hasprev hp = ⊥-elim (z29 {mc} {asc} spd z31 hp ) where + z31 : odef (ZChain.chain zc) (cf nmx d) + z31 = ZChain.f-next zc (subst (λ k → odef (ZChain.chain zc) k) (sym (HasPrev.x=fy hp)) + (ZChain.f-next zc + (chain-mono (cf nmx) (cf-is-≤-monotonic nmx) as0 supf (ZChain.supf-mono zc) (o<→≤ d<A) ( HasPrev.ay hp )))) + -- case1 : FClosure of s + -- case2 : u o< supf mc + -- case3 : u ≡ supf mc z31 + -- case4 : supf mc o< u ⊥ ( why ? ) z29 : {mc : Ordinal } {asc : odef A (supf mc)} (spd : MinSUP A (uchain (cf nmx) (cf-is-≤-monotonic nmx) asc )) + → odef (ZChain.chain zc) (cf nmx (MinSUP.sup spd)) → HasPrev A (UnionCF A (cf nmx) (cf-is-≤-monotonic nmx) as0 (ZChain.supf zc) (MinSUP.sup spd)) (MinSUP.sup spd) (cf nmx) → ⊥ - z29 {mc} {asc} spd hp = <-irr z26 z30 where + z29 {mc} {asc} spd ⟪ aa , ch-init fc ⟫ hp = ? + z29 {mc} {asc} spd ⟪ aa , ch-is-sup u u<x is-sup fc ⟫ hp = <-irr (z26 u mc d1) z30 where y : Ordinal - y = HasPrev.y hp + y = HasPrev.y hp -- cf nmx y ≡ d1 + zy : odef (UnionCF A (cf nmx) (cf-is-≤-monotonic nmx) as0 (ZChain.supf zc) (MinSUP.sup spd)) y + zy = HasPrev.ay hp d1 : Ordinal d1 = MinSUP.sup spd -- supf d1 ≡ d - z31 : odef (uchain (cf nmx) (cf-is-≤-monotonic nmx) asc) (cf nmx (MinSUP.sup spd)) - z31 = ? z30 : * d1 < * (cf nmx d1) z30 = proj1 (cf-is-<-monotonic nmx d1 (MinSUP.asm spd)) z24 : y << d1 z24 = subst (λ k → y << k) (sym (HasPrev.x=fy hp)) ( proj1 (cf-is-<-monotonic nmx y (proj1 (HasPrev.ay hp) ) )) - z26 : (* (cf nmx d1) ≡ * d1) ∨ (* (cf nmx d1) < * d1) - z26 with MinSUP.x<sup spd z31 - ... | case1 eq = case1 (cong (*) eq) - ... | case2 lt = case2 lt - -- case1 : FClosure of y - -- case2 : u o< supf mc - -- case3 : u ≡ supf mc z31 - -- case4 : supf mc o< u ⊥ ( why ? ) - z25 : odef (ZChain.chain zc) (cf nmx d) - z25 = ZChain.f-next zc (subst (λ k → odef (ZChain.chain zc) k) (sym (HasPrev.x=fy hp)) - (ZChain.f-next zc - (chain-mono (cf nmx) (cf-is-≤-monotonic nmx) as0 supf (ZChain.supf-mono zc) (o<→≤ d<A) ( HasPrev.ay hp )))) + z26 : (u mc d1 : Ordinal ) → (* (cf nmx d1) ≡ * d1) ∨ (* (cf nmx d1) < * d1) + z26 u mc d1 = ? -- with trio< u (supf mc) + -- ... | tri< a ¬b ¬c = ? + -- ... | tri> ¬a ¬b x<z = ? + -- ... | tri≈ ¬a b ¬c = ? -- with MinSUP.x<sup spd fc + -- ... | case1 eq = ? -- case1 (cong (*) eq) + -- ... | case2 lt = ? -- case2 lt sd=d : supf d ≡ d sd=d = ZChain.sup=u zc (MinSUP.asm spd) (o<→≤ d<A) ⟪ is-sup , not-hasprev ⟫