Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 323:e228e96965f0
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 04 Jul 2020 12:53:40 +0900 |
parents | a9d380378efd |
children | fbabb20f222e |
files | OD.agda |
diffstat | 1 files changed, 13 insertions(+), 8 deletions(-) [+] |
line wrap: on
line diff
--- a/OD.agda Fri Jul 03 22:54:45 2020 +0900 +++ b/OD.agda Sat Jul 04 12:53:40 2020 +0900 @@ -315,15 +315,20 @@ isuc : {x : Ordinal } → infinite-d x → infinite-d (od→ord ( Union (ord→od x , (ord→od x , ord→od x ) ) )) + is-ω : (x : Ordinal) → Dec (infinite-d x ) + is-ω x = {!!} + infinite : HOD - infinite = record { od = record { def = λ x → infinite-d x } ; odmax = next o∅ ; <odmax = lemma } where - lemma : {y : Ordinal} → infinite-d y → y o< next o∅ - lemma {o∅} iφ = proj1 next-limit - lemma (isuc {x} i) = lemma1 where -- proj2 next-limit ? ( lemma i ) - lemma1 : od→ord (Union (ord→od x , (ord→od x , ord→od x))) o< next o∅ - lemma1 = {!!} - - + infinite = record { od = record { def = λ x → infinite-d x } ; odmax = next o∅ ; <odmax = lemma1 } where + lemma : {y : Ordinal} → Lift (suc n) (infinite-d y → y o< next o∅ ) + lemma {y} = TransFinite {λ x → Lift (suc n) (infinite-d x → x o< next o∅) } ind y where + ind : (x : Ordinal) → ((z : Ordinal) → z o< x → Lift (suc n) (infinite-d z → z o< (next o∅))) → + Lift (suc n) (infinite-d x → x o< (next o∅)) + ind x prev with {!!} + ... | ttt = {!!} + lemma1 : {y : Ordinal} → infinite-d y → y o< next o∅ + lemma1 {y} with lemma {y} + lemma1 {y} | lift p = p _=h=_ : (x y : HOD) → Set n x =h= y = od x == od y