Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1411:e5192c07777f
Recursive record CN needs to be declared as either inductive or coinductive
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 30 Jun 2023 12:22:26 +0900 |
parents | cc76e2b1f3b5 |
children | 4b72bc3e2fab |
files | src/cardinal.agda |
diffstat | 1 files changed, 18 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- a/src/cardinal.agda Fri Jun 30 11:30:04 2023 +0900 +++ b/src/cardinal.agda Fri Jun 30 12:22:26 2023 +0900 @@ -339,6 +339,16 @@ be72 : (x : Ordinal) (bx : odef (* b) x) → h (be71 x bx) ≡ x be72 x bx = ? where + + be76 : (cn : odef ( Image (& UC) (Injection-⊆ UC⊆a f)) x) → h⁻¹ bx ≡ Uf x (subst (λ k → odef k x) (sym *iso) cn) + be76 cn with ODC.p∨¬p O (odef ( Image (& UC) (Injection-⊆ UC⊆a f)) x) + ... | case1 img = cong (λ k → Uf x k ) ( HE.≅-to-≡ ( ∋-irr {(* (& (Image (& UC) (Injection-⊆ UC⊆a f))))} b04 b05 )) where + b04 : odef (* (& (Image (& UC) (Injection-⊆ UC⊆a f)))) x + b04 = subst (λ k → odef k x) (sym *iso) img + b05 : odef (* (& (Image (& UC) (Injection-⊆ UC⊆a f)))) x + b05 = subst (λ k → odef k x) (sym *iso) cn + ... | case2 nimg = ⊥-elim ( nimg cn) + be73 : (cn : odef ( Image (& UC) (Injection-⊆ UC⊆a f)) x) → odef (* a) (Uf x (subst (λ k → odef k x) (sym *iso) cn)) be73 cn with ODC.p∨¬p O (odef ( Image (& UC) (Injection-⊆ UC⊆a f)) x) ... | case1 img = be03 (subst (λ k → odef k x) (sym *iso) cn) where @@ -346,6 +356,7 @@ be03 cn with subst (λ k → odef k x ) *iso cn ... | record { y = y ; ay = ay ; x=fy = x=fy } = UC⊆a ay ... | case2 nimg = ⊥-elim ( nimg cn) + be60 : (ncn : ¬ (odef ( Image (& UC) (Injection-⊆ UC⊆a f)) x)) → odef (* b \ * (& (Image (& UC) (Injection-⊆ UC⊆a f)))) x be60 ncn = ⟪ bx , subst (λ k → ¬ odef k x ) (sym *iso) ncn ⟫ be74 : (ncn : ¬ (odef ( Image (& UC) (Injection-⊆ UC⊆a f)) x)) → odef (* a) (i→ be11 x (subst (λ k → odef k x ) (sym *iso) (be60 ncn) )) @@ -353,6 +364,13 @@ ... | case1 img = ⊥-elim ( ncn img ) ... | case2 nimg = proj1 (subst₂ (λ j k → odef j k ) *iso refl (iB be11 x (subst (λ k → odef k x) (sym *iso) (be60 ncn)) )) + be75 : h (be71 x bx) ≡ x + be75 with ODC.p∨¬p O (odef ( Image (& UC) (Injection-⊆ UC⊆a f)) x) + ... | case1 cn = trans ? (be78 (be73 cn)) where + be78 : (auf : odef (* a) (Uf x (subst (λ k → odef k x) (sym *iso) cn))) → h auf ≡ x + be78 = ? + ... | case2 ncn = ? + _c<_ : ( A B : HOD ) → Set n A c< B = ¬ ( Injection (& A) (& B) )