changeset 1196:e7c3bd9e7c3e

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Tue, 28 Feb 2023 22:33:13 +0900
parents 68239d102d15
children 0a88fcd5d1c9
files src/Topology.agda
diffstat 1 files changed, 22 insertions(+), 8 deletions(-) [+]
line wrap: on
line diff
--- a/src/Topology.agda	Tue Feb 28 19:05:58 2023 +0900
+++ b/src/Topology.agda	Tue Feb 28 22:33:13 2023 +0900
@@ -441,20 +441,21 @@
       fp08 : odef (* X) (& fp07)
       fp08 = ODC.x∋minimal O (* X) (0<P→ne (subst (λ k → o∅ o< k) (sym &iso) 0<X) )
       no-cover : ¬ ( (* (OX CX)) covers L ) 
-      no-cover cov = ⊥-elim ? where
+      no-cover cov = ⊥-elim (f20 (Compact.isCover compact (OOX CX) cov)) where
           fp01 : Ordinal
           fp01 = Compact.finCover compact (OOX CX) cov
           record SB (t : Ordinal) : Set n where
             field
                i : Ordinal 
                sb : Subbase (* X) (& (L \ * i))
+               not-t : (L \ * i) ⊆  (L \ Union ( * t ) )
           fp02 : (t : Ordinal) → Finite-∪ (* (OX CX)) t → SB t
-          fp02 t fin-e = record { i = & ( L  \ fp07) ; sb = gi (subst (λ k → odef (* X) k) fp21 fp08) } where  
+          fp02 t fin-e = record { i = & ( L  \ fp07) ; sb = gi (subst (λ k → odef (* X) k) fp21 fp08) ; not-t = ?  } where  
               fp22 : fp07 ⊆ L
               fp22 {x} lt =  cs⊆L top (CX fp08) lt 
               fp21 : & fp07 ≡ & (L \ * (& (L \ fp07)))
               fp21 = cong (&) (trans (sym (L\Lx=x fp22)) (cong (λ k → L \  k) (sym *iso)))
-          fp02 t (fin-i {x} tx ) = record { i = x ; sb = gi fp03 } where
+          fp02 t (fin-i {x} tx ) = record { i = x ; sb = gi fp03  ; not-t = ? } where
               fp03 :  odef (* X) (& (L \ * x))
               fp03 with subst (λ k → odef k x ) *iso tx
               ... | record { z = z1 ; az = az1 ; x=ψz = x=ψz1 } = subst (λ k → odef (* X) k) fip33 az1 where
@@ -467,7 +468,7 @@
                      & (L \ ( L \ * z1)) ≡⟨ cong (λ k → & ( L \ k )) (sym *iso) ⟩
                      & (L \ * (& ( L \ * z1))) ≡⟨ cong (λ k → & ( L \ * k )) (sym x=ψz1) ⟩
                      & (L \ * x ) ∎ where open ≡-Reasoning
-          fp02 t (fin-∪ {tx} {ty} x y ) =  record { i = & (* (SB.i (fp02 tx x)) ∪ * (SB.i (fp02 ty y))) ; sb = fp11 } where
+          fp02 t (fin-∪ {tx} {ty} x y ) =  record { i = & (* (SB.i (fp02 tx x)) ∪ * (SB.i (fp02 ty y))) ; sb = fp11  ; not-t = ? } where
               fp04 :  {tx ty : Ordinal} → & (* (& (L \ * tx)) ∩ * (& (L \ * ty))) ≡ & (L \ * (& (* tx ∪ * ty)))
               fp04 {tx} {ty} = cong (&) ( ==→o≡ record { eq→ = fp05 ; eq← = fp09 } ) where
                   fp05 : {x : Ordinal} → odef (* (& (L \ * tx)) ∩ * (& (L \ * ty))) x → odef (L \ * (& (* tx ∪ * ty))) x
@@ -499,10 +500,23 @@
               fp17 {y} lt = record { owner = cover fcov (fp16 lt) ; ao = P∋cover fcov (fp16 lt) ; ox = isCover fcov (fp16 lt) } 
           fcov : Finite-∪ (* (OX CX)) (Compact.finCover compact (OOX CX) cov)
           fcov = Compact.isFinite compact (OOX CX) cov
-          ¬i⊆Ut : {i : Ordinal } → (sb : Subbase (* X) (& (L \ * i))) → ¬ ( (L \ * i) =h= od∅ )
-          ¬i⊆Ut {i} sb = 0<P→ne (fip sb)
-          f20 : (cov : (* (OX CX)) covers L ) → ¬ ¬ ( (* (Compact.finCover compact (OOX CX) cov)) covers L ) 
-          f20 = ?
+          0<sb : {i : Ordinal } → (sb : Subbase (* X) (& (L \ * i))) → o∅ o< & (L \ * i)
+          0<sb {i} sb = fip sb
+          sb : SB (Compact.finCover compact (OOX CX) cov)
+          sb = fp02 fp01 (Compact.isFinite compact (OOX CX) cov)
+          f20 : ¬ ( (* (Compact.finCover compact (OOX CX) cov)) covers L ) 
+          f20 fcovers = ⊥-elim ( o<¬≡ (cong (&) (sym (==→o≡ f22))) f25 ) where
+               f23 : (L \ * (SB.i sb)) ⊆ ( L \  Union (* (Compact.finCover compact (OOX CX) cov)))
+               f23 = SB.not-t sb
+               f22 : (L \  Union (* (Compact.finCover compact (OOX CX) cov))) =h= od∅
+               f22 = record { eq→ = λ lt → ⊥-elim ( f24 lt)  ; eq← = λ lt → ⊥-elim (¬x<0 lt) } where
+                    f24 : {x : Ordinal } → ¬ ( odef (L \ Union (* (Compact.finCover compact (OOX CX) cov))) x )
+                    f24 {x} ⟪ Lx , not ⟫ = not record { owner = cover fcovers Lx  ; ao = P∋cover fcovers Lx ; ox = isCover fcovers Lx }
+               f25 : & od∅ o< (& (L \  Union (* (Compact.finCover compact (OOX CX) cov))) )
+               f25 = ordtrans<-≤ (subst (λ k → k o< & (L \ * (SB.i sb))) (sym ord-od∅) (0<sb (SB.sb sb) ) )  ( begin
+                  & (L \ * (SB.i sb))  ≤⟨ ⊆→o≤ f23 ⟩ 
+                  & (L \  Union (* (Compact.finCover compact (OOX CX) cov)))  ∎  ) where open o≤-Reasoning O
+
       record  NC : Set n where   -- x is not covered 
         field
            x : Ordinal