Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1471:e970149a6af5
PFOD done
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 22 Jun 2024 12:39:58 +0900 |
parents | 41a8df20cfea |
children | d0b4be1cab0d |
files | src/PFOD.agda |
diffstat | 1 files changed, 16 insertions(+), 17 deletions(-) [+] |
line wrap: on
line diff
--- a/src/PFOD.agda Sat Jun 22 11:39:35 2024 +0900 +++ b/src/PFOD.agda Sat Jun 22 12:39:58 2024 +0900 @@ -191,24 +191,22 @@ f01 : (x y : HOD) (ltx : odef (Omega ho<) (& x)) (lty : odef (Omega ho<) (& y)) → x =h= y → f (ω→nat x ltx) ≡ i1 → f (ω→nat y lty) ≡ i1 f01 x y ltx lty x=y feq = subst (λ k → f k ≡ i1 ) (ω→nato-cong ltx lty (==→o≡ x=y) ) feq f00 : (x y : HOD) → x =h= y → (fω→2-sel f x ) ⇔ (fω→2-sel f y) - proj1 (f00 x y x=y) fs = ⟪ subst (λ k → odef (Omega ho<) k) (==→o≡ x=y) (proj1 fs) , (λ lt → f01 x y (proj1 fs) lt x=y (proj2 fs (f02 _ _ lt))) ⟫ where - f02 : (y x : Ordinal ) → odef (Omega ho<) y → Omega-d x - f02 _ x OD.iφ = ? - f02 _ x (OD.isuc lt) = ? - proj2 (f00 x y x=y) fs = ⟪ subst (λ k → odef (Omega ho<) k) (sym (==→o≡ x=y)) (proj1 fs) , (λ lt → f01 y x (proj1 fs) lt (==-sym x=y) (proj2 fs ?)) ⟫ + proj1 (f00 x y x=y) fs = ⟪ subst (λ k → odef (Omega ho<) k) (==→o≡ x=y) (proj1 fs) , (λ lt → f01 x y (proj1 fs) lt x=y (f02 fs)) ⟫ where + f02 : (fs : fω→2-sel f x ) → f (ω→nat x (proj1 fs)) ≡ i1 -- work around for cubical bug? + f02 ⟪ wx , wx→eq ⟫ = wx→eq wx + proj2 (f00 x y x=y) fs = ⟪ subst (λ k → odef (Omega ho<) k) (sym (==→o≡ x=y)) (proj1 fs) , (λ lt → f01 y x (proj1 fs) lt (==-sym x=y) (f02 fs)) ⟫ where + f02 : (fs : fω→2-sel f y ) → f (ω→nat y (proj1 fs)) ≡ i1 + f02 ⟪ wy , wy→eq ⟫ = wy→eq wy fω→2 : (Nat → Two) → HOD fω→2 f = Select (Omega ho<) (fω→2-sel f) (fω→2-wld f) --- import Axiom.Extensionality.Propositional --- postulate f-extensionality : { n m : Level} → Axiom.Extensionality.Propositional.Extensionality n m - ω2∋f : (f : Nat → Two) → ω→2 ∋ fω→2 f -ω2∋f f = ? -- power← (Omega ho<) (fω→2 f) (λ {x} lt → proj1 ((proj2 (selection {fω→2-sel f} {(Omega ho<)} )) lt)) +ω2∋f f = power← (Omega ho<) (fω→2 f) (λ {x} lt → proj1 ((proj2 (selection {fω→2-sel f} {fω→2-wld f} {Omega ho<} {x} )) lt)) ω→2f≡i1 : (X i : HOD) → (iω : (Omega ho<) ∋ i) → (lt : ω→2 ∋ X ) → ω2→f X lt (ω→nat i iω) ≡ i1 → X ∋ i ω→2f≡i1 X i iω lt eq with ∋-p X (nat→ω (ω→nat i iω)) -ω→2f≡i1 X i iω lt eq | yes p = ? -- subst (λ k → X ∋ k ) (nat→ω-iso iω) p +ω→2f≡i1 X i iω lt eq | yes p = subst (λ k → odef X k) (==→o≡ (nat→ω-iso iω )) p ω2→f-iso : (X : HOD) → ( lt : ω→2 ∋ X ) → fω→2 ( ω2→f X lt ) =h= X eq→ (ω2→f-iso X lt) {x} ⟪ ωx , ⟪ ωx1 , iso ⟫ ⟫ = le00 where @@ -222,21 +220,22 @@ ... | yes p = refl ... | no ¬p = ⊥-elim ( ¬p (subst (λ k → odef X k ) le03 Xx )) where le03 : x ≡ & (nat→ω (ω→nato wx)) - le03 = ? -- subst₂ (λ j k → j ≡ k ) &iso refl (cong (&) (sym ( nat→ω-iso wx ) ) ) + le03 = trans (sym &iso) (sym (==→o≡ ( nat→ω-iso wx ) )) -¬i1→i0 : ? -¬i1→i0 = ? +¬i1→i0 : {x : Two} → ¬ (x ≡ i1 ) → x ≡ i0 +¬i1→i0 {i0} ne = refl +¬i1→i0 {i1} ne = ⊥-elim ( ne refl ) -fω→2-iso : (f : Nat → Two) → ω2→f ( fω→2 f ) (ω2∋f f) ≡ f -fω→2-iso f = ? where -- f-extensionality (λ x → le01 x ) where +fω→2-iso : (f : Nat → Two) → (x : Nat ) → ω2→f ( fω→2 f ) (ω2∋f f) x ≡ f x +fω→2-iso f x = le01 x where le01 : (x : Nat) → ω2→f (fω→2 f) (ω2∋f f) x ≡ f x le01 x with ∋-p (fω→2 f) (nat→ω x) - le01 x | yes p = subst (λ k → i1 ≡ f k ) (ω→nat-iso0 x (proj1 (proj2 p)) ?) (sym ((proj2 (proj2 p)) le02)) where + le01 x | yes p = subst (λ k → i1 ≡ f k ) (ω→nat-iso0 x (proj1 (proj2 p)) (==-trans *iso *iso)) (sym ((proj2 (proj2 p)) le02)) where le02 : Omega-d (& (* (& (nat→ω x)))) le02 = proj1 (proj2 p ) le01 x | no ¬p = sym ( ¬i1→i0 le04 ) where le04 : ¬ f x ≡ i1 le04 fx=1 = ¬p ⟪ ω∋nat→ω {x} , ⟪ subst (λ k → Omega-d k) (sym &iso) (ω∋nat→ω {x}) , le05 ⟫ ⟫ where le05 : (lt : Omega-d (& (* (& (nat→ω x))))) → f (ω→nato lt) ≡ i1 - le05 lt = trans (cong f (ω→nat-iso0 x lt ?)) fx=1 + le05 lt = trans (cong f (ω→nat-iso0 x lt (==-trans *iso *iso))) fx=1