Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1046:e99e2bcb885c
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 05 Dec 2022 15:09:41 +0900 |
parents | 022d2ef3f20b |
children | aebab71cc386 |
files | src/zorn.agda |
diffstat | 1 files changed, 38 insertions(+), 28 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Mon Dec 05 00:39:14 2022 +0900 +++ b/src/zorn.agda Mon Dec 05 15:09:41 2022 +0900 @@ -332,9 +332,8 @@ field supf : Ordinal → Ordinal - order : {x y w : Ordinal } → y o≤ z → x o< y → supf x o< z → FClosure A f (supf x) w → w ≤ supf y - - cfcs : {a b w : Ordinal } → a o< b → b o≤ z → supf a o< b → FClosure A f (supf a) w → odef (UnionCF A f ay supf b) w + cfcs : {a b w : Ordinal } → a o< b → b o≤ z → supf a o< b → FClosure A f (supf a) w → odef (UnionCF A f ay supf b) w + order : {a b w : Ordinal } → b o≤ z → supf a o< supf b → FClosure A f (supf a) w → w ≤ supf b asupf : {x : Ordinal } → odef A (supf x) supf-mono : {x y : Ordinal } → x o≤ y → supf x o≤ supf y @@ -397,13 +396,13 @@ subst₂ (λ j k → Tri (j < k) (j ≡ k) (k < j)) *iso *iso fc-total where fc-total : Tri (* (& a) < * (& b)) (* (& a) ≡ * (& b)) (* (& b) < * (& a) ) fc-total with trio< ua ub - ... | tri< a₁ ¬b ¬c with ≤-ftrans (order (o<→≤ sub<x) a₁ (subst (λ k → k o< z) (sym sua=ua) sua<x) fca ) (s≤fc (supf ub) f mf fcb ) + ... | tri< a₁ ¬b ¬c with ≤-ftrans (order (o<→≤ sub<x) (subst₂ (λ j k → j o< k) (sym sua=ua) (sym sub=ub) a₁) fca ) (s≤fc (supf ub) f mf fcb ) ... | case1 eq1 = tri≈ (λ lt → ⊥-elim (<-irr (case1 (sym ct00)) lt)) ct00 (λ lt → ⊥-elim (<-irr (case1 ct00) lt)) where ct00 : * (& a) ≡ * (& b) ct00 = cong (*) eq1 ... | case2 a<b = tri< a<b (λ eq → <-irr (case1 (sym eq)) a<b ) (λ lt → <-irr (case2 a<b ) lt) fc-total | tri≈ _ refl _ = fcn-cmp _ f mf fca fcb - fc-total | tri> ¬a ¬b c with ≤-ftrans (order (o<→≤ sua<x) c (subst (λ k → k o< z) (sym sub=ub) sub<x) fcb ) (s≤fc (supf ua) f mf fca ) + fc-total | tri> ¬a ¬b c with ≤-ftrans (order (o<→≤ sua<x) (subst₂ (λ j k → j o< k) (sym sub=ub) (sym sua=ua) c) fcb ) (s≤fc (supf ua) f mf fca ) ... | case1 eq1 = tri≈ (λ lt → ⊥-elim (<-irr (case1 (sym ct00)) lt)) ct00 (λ lt → ⊥-elim (<-irr (case1 ct00) lt)) where ct00 : * (& a) ≡ * (& b) ct00 = cong (*) (sym eq1) @@ -454,7 +453,7 @@ supf-idem {b} b≤z sfb≤x = z52 where z54 : {w : Ordinal} → odef (UnionCF A f ay supf (supf b)) w → (w ≡ supf b) ∨ (w << supf b) z54 {w} ⟪ aw , ch-init fc ⟫ = fcy<sup b≤z fc - z54 {w} ⟪ aw , ch-is-sup u u<x su=u fc ⟫ = order b≤z u<b (ordtrans<-≤ (subst (λ k → k o< b) (sym su=u) u<b) b≤z) fc where + z54 {w} ⟪ aw , ch-is-sup u u<x su=u fc ⟫ = order b≤z (subst (λ k → k o< supf b) (sym su=u) u<x) fc where u<b : u o< b u<b = supf-inject (subst (λ k → k o< supf b ) (sym (su=u)) u<x ) z52 : supf (supf b) ≡ supf b @@ -655,7 +654,6 @@ ... | ⟪ ab0 , ch-is-sup u u<x su=u fc ⟫ = ⟪ ab , subst (λ k → UChain ay x k ) (sym (HasPrev.x=fy has-prev)) ( ch-is-sup u u<x su=u (fsuc _ fc)) ⟫ - supf = ZChain.supf zc zc1 : (x : Ordinal ) → x o≤ & A → ZChain1 A f mf< ay zc x @@ -859,9 +857,7 @@ m13 : supf0 px o< x → supf0 px o≤ sp1 m13 spx<x = IsMinSUP.minsup (ZChain.is-minsup zc o≤-refl ) (MinSUP.as sup1) m14 where m14 : {z : Ordinal} → odef (UnionCF A f ay (ZChain.supf zc) px) z → (z ≡ sp1) ∨ (z << sp1) - m14 {z} ⟪ as , ch-init fc ⟫ = ≤-ftrans (ZChain.fcy<sup zc o≤-refl fc) (sfpx≤sp1 spx<x) - m14 {z} ⟪ as , ch-is-sup u u<x su=u fc ⟫ = - ≤-ftrans (ZChain.order zc o≤-refl u<x (subst (λ k → k o< px) (sym (su=u)) u<x ) fc) (sfpx≤sp1 spx<x ) + m14 {z} uz = MinSUP.x≤sup sup1 (case1 uz) zc41 : ZChain A f mf< ay x zc41 = record { supf = supf1 ; sup=u = sup=u ; asupf = asupf1 ; supf-mono = supf1-mono ; order = order @@ -1096,23 +1092,37 @@ u≤px : u o≤ px u≤px = ordtrans u<x z≤px - order1 : {a b : Ordinal} {w : Ordinal} → - b o≤ x → a o< b → supf1 a o< x → FClosure A f (supf1 a) w → w ≤ supf1 b - order1 {a} {b} {w} b≤x a<b sa<x fc with cfcs a<b b≤x ? fc - ... | t = ? + order : {a b : Ordinal} {w : Ordinal} → + b o≤ x → supf1 a o< supf1 b → FClosure A f (supf1 a) w → w ≤ supf1 b + order {a} {b} {w} b≤x sa<sb fc with osuc-≡< b≤x + ... | case2 b<x = + subst ( λ k → w ≤ k ) (sym (sf1=sf0 ?)) ( ZChain.order zc (zc-b<x _ b<x) + (subst₂ (λ j k → j o< k ) (sf1=sf0 ?) (sf1=sf0 ?) sa<sb) (fcup fc ?) ) + ... | case1 eq with zc43 (supf1 a) b + ... | case1 sa<b = subst (λ k → w ≤ k ) (sym (sf1=sp1 ? )) ( MinSUP.x≤sup sup1 ?) where + z26 : odef pchainpx w + z26 = zc11 (chain-mono f mf ay supf1 supf1-mono ? (cfcs ? b≤x ? fc)) + ... | case2 b≤sa = ⊥-elim ( o≤> z27 sa<sb ) where + z28 : supf1 (supf0 a) ≡ supf1 a -- x o≤ supf1 a → + z28 with zc43 (supf0 a) x + ... | case1 sa<x = subst₂ (λ j k → j ≡ k) ? ? ( ZChain.supf-idem zc ? ? ) + ... | case2 x≤sa with osuc-≡< ( supf1-mono x≤sa ) -- = ? -- sp1 ≡ supf0 a --- sp1 o≤ supf0 a + ... | case1 eq = sym (trans z29 eq ) where + z30 : supf1 (supf0 a) ≡ supf1 (supf0 a) + z30 = ? + z29 : supf1 a ≡ supf1 x + z29 = ? + z32 : supf1 x ≡ supf1 (supf0 a) -- supf1 (supf0 a) ≡ supf1 a + z32 = eq + ... | case2 lt = ? where + z31 : supf1 x o< supf1 (supf0 a) + z31 = lt - order : {a b : Ordinal} {w : Ordinal} → - b o≤ x → a o< b → supf1 a o< x → FClosure A f (supf1 a) w → w ≤ supf1 b - order {a} {b} {w} b≤x a<b sa<x fc with trio< b px - ... | tri< b<px ¬b ¬c = ZChain.order zc (o<→≤ b<px) a<b ? (fcup fc (o<→≤ (ordtrans a<b b<px) )) - ... | tri≈ ¬a b=px ¬c = ZChain.order zc (o≤-refl0 b=px) a<b ? (fcup fc (o<→≤ (subst (λ k → a o< k) b=px a<b ))) - ... | tri> ¬a ¬b px<b with trio< a px - ... | tri< a<px ¬b ¬c = ≤-ftrans (ZChain.order zc o≤-refl a<px ? fc) (sfpx≤sp1 ? ) -- supf1 a ≡ supf0 a - ... | tri≈ ¬a a=px ¬c = MinSUP.x≤sup sup1 ( - case2 ⟪ (subst (λ k → FClosure A f (supf0 k) w) a=px fc ) , subst (λ k → supf0 k o< x) a=px sa<x ⟫ ) - ... | tri> ¬a ¬b px<a = ⊥-elim (¬p<x<op ⟪ px<a , zc22 ⟫ ) where -- supf1 a ≡ sp1 - zc22 : a o< osuc px - zc22 = subst (λ k → a o< k ) (sym (Oprev.oprev=x op)) (ordtrans<-≤ a<b b≤x) + z27 : supf1 b o≤ supf1 a + z27 = begin + supf1 b ≤⟨ ? ⟩ + supf1 (supf1 a) ≡⟨ ? ⟩ + supf1 a ∎ where open o≤-Reasoning O sup=u : {b : Ordinal} (ab : odef A b) → b o≤ x → IsSUP A (UnionCF A f ay supf1 b) b ∧ (¬ HasPrev A (UnionCF A f ay supf1 b) f b ) → supf1 b ≡ b @@ -1178,14 +1188,14 @@ uz01 : Tri (* (& a) < * (& b)) (* (& a) ≡ * (& b)) (* (& b) < * (& a) ) uz01 with trio< (IChain.i ia) (IChain.i ib) ... | tri< ia<ib ¬b ¬c with - ≤-ftrans (ZChain.order (pzc (ob<x lim (IChain.i<x ib))) ? ia<ib ? (ifc≤ ia ib (o<→≤ ia<ib))) (s≤fc _ f mf (IChain.fc ib)) + ≤-ftrans (ZChain.order (pzc (ob<x lim (IChain.i<x ib))) ? ? (ifc≤ ia ib (o<→≤ ia<ib))) (s≤fc _ f mf (IChain.fc ib)) ... | case1 eq1 = tri≈ (λ lt → ⊥-elim (<-irr (case1 (sym ct00)) lt)) ct00 (λ lt → ⊥-elim (<-irr (case1 ct00) lt)) where ct00 : * (& a) ≡ * (& b) ct00 = cong (*) eq1 ... | case2 lt = tri< lt (λ eq → <-irr (case1 (sym eq)) lt) (λ lt1 → <-irr (case2 lt) lt1) uz01 | tri≈ ¬a ia=ib ¬c = fcn-cmp _ f mf (IChain.fc ia) (subst (λ k → FClosure A f k (& b)) (sym (iceq ia=ib)) (IChain.fc ib)) uz01 | tri> ¬a ¬b ib<ia with - ≤-ftrans (ZChain.order (pzc (ob<x lim (IChain.i<x ia))) ? ib<ia ? (ifc≤ ib ia (o<→≤ ib<ia))) (s≤fc _ f mf (IChain.fc ia)) + ≤-ftrans (ZChain.order (pzc (ob<x lim (IChain.i<x ia))) ? ? (ifc≤ ib ia (o<→≤ ib<ia))) (s≤fc _ f mf (IChain.fc ia)) ... | case1 eq1 = tri≈ (λ lt → ⊥-elim (<-irr (case1 (sym ct00)) lt)) ct00 (λ lt → ⊥-elim (<-irr (case1 ct00) lt)) where ct00 : * (& a) ≡ * (& b) ct00 = sym (cong (*) eq1)