Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1019:eb2d0fb19b67
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 24 Nov 2022 12:30:41 +0900 |
parents | c63f1fadd27f |
children | eee019e64bea |
files | src/zorn.agda |
diffstat | 1 files changed, 20 insertions(+), 8 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Thu Nov 24 11:18:46 2022 +0900 +++ b/src/zorn.agda Thu Nov 24 12:30:41 2022 +0900 @@ -529,11 +529,9 @@ z54 {w} ⟪ aw , ch-init fc ⟫ = fcy<sup b≤z fc z54 {w} ⟪ aw , ch-is-sup u u<x is-sup fc ⟫ = subst (λ k → (w ≡ k) ∨ (w << k )) (sym (supf-is-minsup b≤z)) - (MinSUP.x≤sup (minsup b≤z) (cfcs mf< u<b b≤z ? fc )) where + (MinSUP.x≤sup (minsup b≤z) (cfcs mf< u<b b≤z (subst (λ k → k o< b) (sym (ChainP.supu=u is-sup)) u<b) fc )) where u<b : u o< b u<b = supf-inject ( subst (λ k → k o< supf b) (sym (ChainP.supu=u is-sup)) u<x ) - su<z : supf u o< z - su<z = subst (λ k → k o< z ) (sym (ChainP.supu=u is-sup)) ( ordtrans<-≤ u<b b≤z ) z52 : supf (supf b) ≡ supf b z52 = sup=u asupf sfb≤x ⟪ record { x≤sup = z54 } , IsMinSUP→NotHasPrev asupf z54 ( λ ax → proj1 (mf< _ ax)) ⟫ @@ -858,8 +856,15 @@ m10 = fc-stop A f mf (ZChain.asupf zc) m11 sb=sx where m11 : {z : Ordinal} → FClosure A f (supf b) z → (z ≡ ZChain.supf zc x) ∨ (z << ZChain.supf zc x) m11 {z} fc = subst (λ k → (z ≡ k) ∨ (z << k)) (sym m18) ( MinSUP.x≤sup m17 m13 ) where + m04 : ¬ HasPrev A (UnionCF A f mf ay supf b) f b + m04 nhp = proj1 is-sup ( record { ax = HasPrev.ax nhp ; y = HasPrev.y nhp ; ay = + chain-mono1 (o<→≤ b<x) (HasPrev.ay nhp) ; x=fy = HasPrev.x=fy nhp } ) + m05 : ZChain.supf zc b ≡ b + m05 = ZChain.sup=u zc ab (o<→≤ (z09 ab) ) ⟪ record { x≤sup = λ {z} uz → IsSUP.x≤sup (proj2 is-sup) uz } , m04 ⟫ + m14 : ZChain.supf zc b o< x + m14 = subst (λ k → k o< x ) (sym m05) b<x m13 : odef (UnionCF A f mf ay supf x) z - m13 = ZChain.cfcs zc mf< b<x x≤A ? fc + m13 = ZChain.cfcs zc mf< b<x x≤A m14 fc ... | no lim = record { is-max = is-max ; order = order } where is-max : {a : Ordinal} {b : Ordinal} → odef (UnionCF A f mf ay supf x) a → @@ -896,8 +901,15 @@ m10 = fc-stop A f mf (ZChain.asupf zc) m11 sb=sx where m11 : {z : Ordinal} → FClosure A f (supf b) z → (z ≡ ZChain.supf zc x) ∨ (z << ZChain.supf zc x) m11 {z} fc = subst (λ k → (z ≡ k) ∨ (z << k)) (sym m18) ( MinSUP.x≤sup m17 m13 ) where + m04 : ¬ HasPrev A (UnionCF A f mf ay supf b) f b + m04 nhp = proj1 is-sup ( record { ax = HasPrev.ax nhp ; y = HasPrev.y nhp ; ay = + chain-mono1 (o<→≤ b<x) (HasPrev.ay nhp) ; x=fy = HasPrev.x=fy nhp } ) + m05 : ZChain.supf zc b ≡ b + m05 = ZChain.sup=u zc ab (o<→≤ (z09 ab) ) ⟪ record { x≤sup = λ {z} uz → IsSUP.x≤sup (proj2 is-sup) uz } , m04 ⟫ + m14 : ZChain.supf zc b o< x + m14 = subst (λ k → k o< x ) (sym m05) b<x m13 : odef (UnionCF A f mf ay supf x) z - m13 = ZChain.cfcs zc mf< b<x x≤A ? fc + m13 = ZChain.cfcs zc mf< b<x x≤A m14 fc uchain : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) {y : Ordinal} (ay : odef A y) → HOD uchain f mf {y} ay = record { od = record { def = λ x → FClosure A f y x } ; odmax = & A ; <odmax = @@ -1169,7 +1181,9 @@ order {s} {z1} ss<spx fcs = subst (λ k → (z1 ≡ k) ∨ (z1 << k )) (trans (sym (ZChain.supf-is-minsup zc spx≤px )) (sym (sf1=sf0 spx≤px) ) ) (MinSUP.x≤sup (ZChain.minsup zc spx≤px) (ZChain.cfcs zc mf< (supf-inject0 supf1-mono ss<spx) - spx≤px ? (fcup fcs (ordtrans (supf-inject0 supf1-mono ss<spx) spx≤px ) ))) where + spx≤px ss0<spx (fcup fcs (ordtrans (supf-inject0 supf1-mono ss<spx) spx≤px ) ))) where + ss0<spx : supf0 s o< spx + ss0<spx = ? ss<px : supf0 s o< px ss<px = osucprev ( begin osuc (supf0 s) ≡⟨ cong osuc (sym (sf1=sf0 ( begin @@ -1471,8 +1485,6 @@ fcb : FClosure A f (supfb a) w fcb = ? -- supfb a o≤ supfb b - sa<b : supfb a o< osuc b - sa<b = ? zcb : odef (UnionCF A f mf ay supfb b) w zcb = ZChain.cfcs (pzc (ob<x lim b<x)) mf< a<b (o<→≤ <-osuc) ? fcb zc40 : odef (UnionCF A f mf ay supf1 b) w