Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 446:eb4049abad70
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 13 Mar 2022 08:05:15 +0900 |
parents | d1c9f5ae5d0a |
children | 364d738f871d |
files | src/generic-filter.agda src/nat.agda |
diffstat | 2 files changed, 30 insertions(+), 50 deletions(-) [+] |
line wrap: on
line diff
--- a/src/generic-filter.agda Tue Mar 01 14:31:31 2022 +0900 +++ b/src/generic-filter.agda Sun Mar 13 08:05:15 2022 +0900 @@ -59,12 +59,17 @@ ctl-M : Ordinal ctl→ : Nat → Ordinal ctl← : (x : Ordinal )→ x o< ctl-M → Nat - is-Model : (x : Nat) → ctl→ x o< ctl-M + ctl<M : (x : Nat) → ctl→ x o< ctl-M ctl-iso→ : { x : Ordinal } → (lt : x o< ctl-M) → ctl→ (ctl← x lt ) ≡ x - ctl-iso← : { x : Nat } → ctl← (ctl→ x ) (is-Model x) ≡ x + ctl-iso← : { x : Nat } → ctl← (ctl→ x ) (ctl<M x) ≡ x ctl-P∈M : Power P ∈ * ctl-M +-- +-- almmost universe +-- find-p contains ∃ x : Ordinal → x o< & M → ∀ r ∈ M → ∈ Ord x +-- --- we expect ¬ G ∈ * ctl-M, so ¬ P ∈ * ctl-M + +-- we expect P ∈ * ctl-M ∧ G ⊆ Power P , ¬ G ∈ * ctl-M, open CountableModel @@ -79,8 +84,7 @@ --- -- p(n+1) = if (f n) != ∅ then (f n) otherwise p(n) --- is not working well --- skipped a(n) may cantains extra elements in possible r +-- next-p : (p : Ordinal) → (f : HOD → HOD) → Ordinal next-p p f with is-o∅ ( & (f (* p))) next-p p f | yes y = p @@ -94,12 +98,12 @@ find-p P C (Suc i) x = find-p P C i ( next-p x (λ p → PGHOD i P C (& p) )) --- --- G = { r ∈ Power P | ∃ n → r ⊆ p(n) } +-- G = { r ∈ Power P | ∃ n → p(n) ⊆ q } -- record PDN (P p : HOD ) (C : CountableModel P) (x : Ordinal) : Set n where field gr : Nat - pn<gr : (y : Ordinal) → odef (* x) y → odef (* (find-p P C gr (& p))) y + pn<gr : (y : Ordinal) → odef (* (find-p P C gr (& p))) y → odef (* x) y x∈PP : odef (Power P) x open PDN @@ -127,35 +131,21 @@ x<y→∋ : {x y : Ordinal} → odef (* x) y → * x ∋ * y x<y→∋ {x} {y} lt = subst (λ k → odef (* x) k ) (sym &iso) lt +open import Data.Nat.Properties +open import nat open _⊆_ -find-an :{P p : HOD} → (C : CountableModel P ) → odef (Power P) (& p) → Nat -find-an = {!!} - -found-an :{P p : HOD} → (C : CountableModel P ) → (pw : odef (Power P) (& p)) → * (ctl→ C (find-an C pw)) =h= p -found-an = {!!} - -record ⊆-reduce ( p : HOD ) : Set (suc n) where - field - next : HOD - is-small : next ⊆ p ∧ ( ¬ ( next =h= p )) +p-monotonic1 : (P p : HOD ) (C : CountableModel P ) → {n : Nat} → (* (find-p P C n (& p))) ⊆ (* (find-p P C (Suc n) (& p))) +p-monotonic1 = {!!} -record ⊆-reduce-∅ (next : HOD → HOD) : Set (suc n) where - field - p : HOD - is-∅ : & (next p) ≡ o∅ +p-monotonic : (P p : HOD ) (C : CountableModel P ) → {n m : Nat} → n ≤ m → (* (find-p P C n (& p))) ⊆ (* (find-p P C m (& p))) +p-monotonic P p C {Zero} {Zero} n≤m = refl-⊆ +p-monotonic P p C {Zero} {Suc m} z≤n = trans-⊆ (p-monotonic P p C {Zero} {m} z≤n ) (p-monotonic1 P p C {m} ) +p-monotonic P p C {Suc n} {Suc m} (s≤s n≤m) with <-cmp n m +... | tri< a ¬b ¬c = trans-⊆ (p-monotonic P p C {Suc n} {m} {!!} ) (p-monotonic1 P p C {m} ) +... | tri≈ ¬a refl ¬c = refl-⊆ +... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> n≤m c ) -⊆-reduction : (next : (x : HOD) → ⊆-reduce x ) → (x : HOD) → ¬ ( x ∈ ( ⊆-reduce.next (next x ))) -⊆-reduction next x = subst (λ k → ¬ (x ∈ ⊆-reduce.next (next k))) *iso (r02 x) where - r01 : (x₁ : Ordinal) → ((y : Ordinal) → y o< x₁ → ¬ odef (⊆-reduce.next (next (* y))) y) → - ¬ odef (⊆-reduce.next (next (* x₁))) x₁ - r01 = {!!} - r02 : (x : HOD) → ¬ (x ∈ ⊆-reduce.next (next (* (& x)))) - r02 x = TransFinite0 {λ x → ¬ ( odef ( ⊆-reduce.next (next (* x))) x) } r01 (& x) - -next-x≡∅ : (next : HOD → HOD) → ( (x : HOD) → ¬ ( x ∈ next x) ) → ⊆-reduce-∅ next -next-x≡∅ = {!!} - P-GenericFilter : (P p0 : HOD ) → Power P ∋ p0 → (C : CountableModel P) → GenericFilter P P-GenericFilter P p0 Pp0 C = record { genf = record { filter = PDHOD P p0 C ; f⊆PL = f⊆PL ; filter1 = f1 ; filter2 = f2 } @@ -176,27 +166,14 @@ pg-01 : Power P ∋ fmin pg-01 = incl (PGHOD∈PL i x ) (subst (λ k → PGHOD i P C k ∋ fmin ) &iso fmin∈PGHOD ) f⊆PL : PDHOD P p0 C ⊆ Power P - f⊆PL = record { incl = λ {x} lt → power← P x (λ {y} y<x → - find-p-⊆P (gr lt) _ (& y) Pp0 (pn<gr lt (& y) (subst (λ k → odef k (& y)) (sym *iso) y<x))) } + f⊆PL = record { incl = λ {x} lt → x∈PP lt } f1 : {p q : HOD} → q ⊆ P → PDHOD P p0 C ∋ p → p ⊆ q → PDHOD P p0 C ∋ q - f1 {p} {q} q⊆P PD∋p p⊆q = record { gr = {!!} ; pn<gr = {!!} ; x∈PP = {!!} } where - -- reduction : {ψ : (x : HOD) → x =h= od∅ → P x} → - -- q ∈ a(∃ n) ⊆ P → ( p n ⊆ q → PDHOD P p0 C ∋ q ) - -- ∨ (¬ (p n ⊆ q) → induction on (p n - q) - -- PDNp : {!!} -- PD⊆⊆N P C (& p) - -- PDNp = PD∋p - f02 : {x : Ordinal} → odef q x → odef P x - f02 {x} lt = subst (λ k → def (od P) k) &iso (incl q⊆P (subst (λ k → def (od q) k) (sym &iso) lt) ) + f1 {p} {q} q⊆P PD∋p p⊆q = record { gr = gr PD∋p ; pn<gr = f04 ; x∈PP = power← _ _ (incl q⊆P) } where f03 : {x : Ordinal} → odef p x → odef q x f03 {x} lt = subst (λ k → def (od q) k) &iso (incl p⊆q (subst (λ k → def (od p) k) (sym &iso) lt) ) - next1 : Ordinal - next1 = {!!} -- find-p P C (gr PD) (next-p x (λ p₁ → PGHOD (gr PD) P C (& p₁))) - -- f05 : next1 o< ctl-M C - -- f05 = {!!} - -- f06 : odef (Power P) (& q) - -- f06 = {!!} - -- f07 : (y : Ordinal) → odef (* (& q)) y → odef (* {!!} ) y - -- f07 = {!!} + f04 : (y : Ordinal) → odef (* (find-p P C (gr PD∋p) (& p0))) y → odef (* (& q)) y + f04 y lt1 = subst₂ (λ j k → odef j k ) (sym *iso) &iso (incl p⊆q (subst₂ (λ j k → odef k j ) (sym &iso) *iso ( pn<gr PD∋p y lt1 ))) + -- odef (* (find-p P C (gr PD∋p) (& p0))) y → odef (* (& q)) y f2 : {p q : HOD} → PDHOD P p0 C ∋ p → PDHOD P p0 C ∋ q → PDHOD P p0 C ∋ (p ∩ q) f2 {p} {q} PD∋p PD∋q = {!!}
--- a/src/nat.agda Tue Mar 01 14:31:31 2022 +0900 +++ b/src/nat.agda Sun Mar 13 08:05:15 2022 +0900 @@ -10,6 +10,9 @@ nat-<> : { x y : Nat } → x < y → y < x → ⊥ nat-<> (s≤s x<y) (s≤s y<x) = nat-<> x<y y<x +nat-≤> : { x y : Nat } → x ≤ y → y < x → ⊥ +nat-≤> (s≤s x<y) (s≤s y<x) = nat-≤> x<y y<x + nat-<≡ : { x : Nat } → x < x → ⊥ nat-<≡ (s≤s lt) = nat-<≡ lt