Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 762:eb68d0870cc6
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 25 Jul 2022 14:56:49 +0900 |
parents | 9307f895891c |
children | 9aa0fc917100 |
files | src/zorn.agda |
diffstat | 1 files changed, 16 insertions(+), 3 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Mon Jul 25 08:29:15 2022 +0900 +++ b/src/zorn.agda Mon Jul 25 14:56:49 2022 +0900 @@ -476,6 +476,7 @@ ... | tri< a ¬b ¬c = ⟪ proj1 ua , ch-is-sup u (o<→≤ a) is-sup-a fc ⟫ -- u o< osuc x ... | tri≈ ¬a u=px ¬c = ⟪ proj1 ua , ch-is-sup u (o≤-refl0 u=px) is-sup-a fc ⟫ ... | tri> ¬a ¬b c = ⊥-elim (<-irr u≤a (ptrans a<b b<u) ) where + -- a and b is a sup of chain, order forces minimulity of sup su=u : ZChain.supf zc u ≡ u su=u = ChainP.supfu=u is-sup-a u<A : u o< & A @@ -493,11 +494,23 @@ m04 = ZChain1.is-max (prev px px<x) m03 b<px ab (case2 record {x<sup = λ {z} lt → IsSup.x<sup is-sup (chain-mono2 x ( o<→≤ (subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc )) o≤-refl lt) } ) a<b ... | tri≈ ¬a b=px ¬c = ⟪ ab , ch-is-sup b (o<→≤ b<x) m06 (subst (λ k → FClosure A f k b) m05 (init ab)) ⟫ where - m06 : ChainP A f mf ay (ZChain.supf zc) b b - m06 = ? m05 : b ≡ ZChain.supf zc b m05 = sym ( ZChain.sup=u zc ab (z09 ab) record { x<sup = λ {z} uz → IsSup.x<sup is-sup (chain-mono2 x (osucc b<x) o≤-refl uz ) } ) + m04 : {z : Ordinal} → FClosure A f y z → z << ZChain.supf zc b + m04 {z} fcz with IsSup.x<sup is-sup ⟪ A∋fc y f mf fcz , ch-init fcz ⟫ + ... | case1 z=b = ? + ... | case2 z<b = subst (λ k → z << k) m05 z<b + m07 : {sup1 z1 : Ordinal} → sup1 o< b → FClosure A f (ZChain.supf zc sup1) z1 → z1 << ZChain.supf zc b + m07 {sup1} s<b (init ay) with IsSup.x<sup is-sup ⟪ A∋fc y f mf (init ay) , ch-is-sup ⟫ + ... | case1 z=b = ? + ... | case2 z<b = subst (λ k → z << k) m05 z<b + m07 {sup1} s<b (fsuc is-sup-z fcz) with IsSup.x<sup is-sup ⟪ A∋fc y f mf fcz , ch-is-sup ⟫ + ... | case1 z=b = ? + ... | case2 z<b = subst (λ k → z << k) m05 z<b + m06 : ChainP A f mf ay (ZChain.supf zc) b b + m06 = record { csupz = subst (λ k → FClosure A f k b) m05 (init ab) ; supfu=u = sym m05 + ; fcy<sup = m04 ; order = ? } ... | no lim = record { is-max = is-max } where is-max : {a : Ordinal} {b : Ordinal} → odef (UnionCF A f mf ay (ZChain.supf zc) x) a → b o< x → (ab : odef A b) → @@ -779,7 +792,7 @@ pinit {a} ⟪ aa , ua ⟫ with ua ... | ch-init fc = s≤fc y f mf fc ... | ch-is-sup u u≤x is-sup fc = ≤-ftrans (case2 zc7) (s≤fc _ f mf fc) where - zc7 : y << psupf ? + zc7 : y << psupf _ zc7 = ChainP.fcy<sup is-sup (init ay) pcy : odef pchain y pcy = ⟪ ay , ch-init (init ay) ⟫