Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 614:eb9cf48f530a
close this
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 17 Jun 2022 21:50:50 +0900 |
parents | 7c5a922931e5 |
children | |
files | src/zorn.agda |
diffstat | 1 files changed, 7 insertions(+), 16 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Fri Jun 17 21:45:33 2022 +0900 +++ b/src/zorn.agda Fri Jun 17 21:50:50 2022 +0900 @@ -233,32 +233,23 @@ field x<sup : {y : Ordinal} → odef B y → (y ≡ x ) ∨ (y << x ) -record SupF (A : HOD) : Set n where +record ZChain ( A : HOD ) (x : Ordinal) ( f : Ordinal → Ordinal ) (supf : Ordinal → SupF A) ( z : Ordinal ) : Set (Level.suc n) where field - chain : Ordinal - -- sup : Ordinal - -- asup : odef A sup - -- is-sup : IsSup A (* chain) asup - -record ZChain ( A : HOD ) (x : Ordinal) ( f : Ordinal → Ordinal ) (supf : Ordinal → SupF A) ( z : Ordinal ) : Set (Level.suc n) where - chain : HOD - chain = * (SupF.chain (supf z )) - field + chain : HOD chain⊆A : chain ⊆' A chain∋x : odef chain x initial : {y : Ordinal } → odef chain y → * x ≤ * y - f-total : IsTotalOrderSet chain f-next : {a : Ordinal } → odef chain a → odef chain (f a) f-immediate : { x y : Ordinal } → odef chain x → odef chain y → ¬ ( ( * x < * y ) ∧ ( * y < * (f x )) ) is-max : {a b : Ordinal } → (ca : odef chain a ) → b o< osuc z → (ab : odef A b) → HasPrev A chain ab f ∨ IsSup A chain ab → * a < * b → odef chain b -record ZChain1 ( A : HOD ) (x : Ordinal) ( f : Ordinal → Ordinal ) ( z : Ordinal ) : Set (Level.suc n) where - field - supf : Ordinal → SupF A - zc : ZChain A x f supf z - chain-mono : {x y : Ordinal} → x o≤ y → y o< osuc z → * (SupF.chain (supf x )) ⊆' * (SupF.chain (supf y )) +chain-mono ( A : HOD ) (x : Ordinal) ( f : Ordinal → Ordinal ) ( z : Ordinal ) + → {x y : Ordinal} (zx : ZChain A x f z ) → (zy : ZChain A y f z) → x o≤ y → y o< osuc z → * (ZChain.chain zx) ⊆' * (ZChain.chain zy ) + +f-total ( A : HOD ) (x : Ordinal) ( f : Ordinal → Ordinal ) ( z : Ordinal ) + → {x y : Ordinal} (zx : ZChain A x f z ) → IsTotalOrderSet (ZChain.chain zx ) record Maximal ( A : HOD ) : Set (Level.suc n) where field