Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 510:ec84dce16697
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 15 Apr 2022 18:27:04 +0900 |
parents | 72ea26339f66 |
children | 361021fe53aa |
files | src/zorn.agda |
diffstat | 1 files changed, 18 insertions(+), 3 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Fri Apr 15 16:46:54 2022 +0900 +++ b/src/zorn.agda Fri Apr 15 18:27:04 2022 +0900 @@ -167,13 +167,23 @@ c-infinite : (y : Ordinal ) → (cy : odef (IChainSet {A} (me ax)) y ) → IChainSup> A ax +open import Data.Nat hiding (_<_) +import Data.Nat.Properties as NP +open import nat + data Chain (A : HOD) (next : (x : Ordinal ) → odef A x → Ordinal ) : ( x : Ordinal ) → Set n where - cfirst : {x : Ordinal } → odef A x → Chain A next x - csuc : {x : Ordinal } → (ax : odef A x ) → Chain A next x → Chain A next (next x ax ) + cfirst : (x : Ordinal ) → odef A x → Chain A next x + csuc : (x : Ordinal ) → (ax : odef A x ) → Chain A next x → Chain A next (next x ax ) ChainClosure : (A : HOD) → (next : (x : Ordinal ) → odef A x → Ordinal ) → HOD ChainClosure A next = record { od = record { def = λ x → Chain A next x } ; odmax = {!!} ; <odmax = {!!} } +cton0 : (A : HOD ) → (next : (x : Ordinal ) → odef A x → Ordinal ) {y : Ordinal } → Chain A next y → ℕ +cton0 A next (cfirst _ x) = zero +cton0 A next (csuc x ax z) = suc (cton0 A next z) +cton : (A : HOD ) → (next : (x : Ordinal ) → odef A x → Ordinal ) → Element (ChainClosure A next) → ℕ +cton A next y = cton0 A next (is-elm y) + InFCSet : (A : HOD) → {x : Ordinal} (ax : A ∋ * x) → (ifc : InFiniteIChain A ax ) → HOD InFCSet A ax ifc = ChainClosure (IChainSet {A} (me ax)) (λ y ay → IChainSup>.y ( InFiniteIChain.c-infinite ifc y ay ) ) @@ -186,8 +196,13 @@ ; trans = λ {x} {y} {z} → IsStrictPartialOrder.trans IPO {x} {y} {z} ; compare = cmp } where IPO : IsPartialOrderSet (InFCSet A ax ifc ) IPO = ⊆-IsPartialOrderSet record { incl = λ {x} lt → {!!} } PO + cnext : (y : Ordinal ) → odef (IChainSet {A} (me ax)) y → Ordinal + cnext y ay = IChainSup>.y ( InFiniteIChain.c-infinite ifc y ay ) cmp : Trichotomous _ _ - cmp x y = {!!} + cmp x y with NP.<-cmp (cton (IChainSet {A} (me ax)) cnext x) (cton (IChainSet {A} (me ax)) cnext y) + ... | tri< a ¬b ¬c = {!!} + ... | tri≈ ¬a b ¬c = {!!} + ... | tri> ¬a ¬b c = {!!} record IsFC (A : HOD) {x : Ordinal} (ax : A ∋ * x) (y : Ordinal) : Set n where