Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 218:eee983e4b402
try func
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 06 Aug 2019 15:50:14 +0900 |
parents | d5668179ee69 |
children | 43021d2b8756 |
files | OD.agda ordinal.agda |
diffstat | 2 files changed, 43 insertions(+), 17 deletions(-) [+] |
line wrap: on
line diff
--- a/OD.agda Mon Aug 05 17:02:37 2019 +0900 +++ b/OD.agda Tue Aug 06 15:50:14 2019 +0900 @@ -274,7 +274,6 @@ -- L0 : {n : Level} → (α : Ordinal {suc n}) → L (osuc α) ∋ L α -- L1 : {n : Level} → (α β : Ordinal {suc n}) → α o< β → ∀ (x : OD {suc n}) → L α ∋ x → L β ∋ x - OD→ZF : {n : Level} → ZF {suc (suc n)} {suc n} OD→ZF {n} = record { ZFSet = OD {suc n} @@ -630,19 +629,18 @@ -- X ---------------------------> Y -- ymap <- def Y y -- - record Onto {n : Level } (X Y : OD {suc n}) : Set (suc (suc n)) where + record Onto {n : Level } (X Y : OD {n}) : Set (suc n) where field - xmap : (x : Ordinal {suc n}) → Ordinal {suc n} - ymap : (y : Ordinal {suc n}) → Ordinal {suc n} - xmap-on-Y : (x : Ordinal {suc n} ) → def X x → def Y (xmap x) - ymap-on-X : (y : Ordinal {suc n} ) → def Y y → def X (ymap y) - onto-iso : (y : Ordinal {suc n} ) → def Y y → xmap ( ymap y ) ≡ y + xmap : (x : Ordinal {n}) → def X x → Ordinal {n} + ymap : (y : Ordinal {n}) → def Y y → Ordinal {n} + ymap-on-X : {y : Ordinal {n} } → (lty : def Y y ) → def X (ymap y lty) + onto-iso : {y : Ordinal {n} } → (lty : def Y y ) → xmap ( ymap y lty ) (ymap-on-X lty ) ≡ y - record Cardinal {n : Level } (X : OD {suc n}) : Set (suc (suc n)) where + record Cardinal {n : Level } (X : OD {n}) : Set (suc n) where field - cardinal : Ordinal {suc n} + cardinal : Ordinal {n} conto : Onto (Ord cardinal) X - cmax : ( y : Ordinal {suc n} ) → cardinal o< y → ¬ Onto (Ord y) X + cmax : ( y : Ordinal {n} ) → cardinal o< y → ¬ Onto (Ord y) X cardinal : {n : Level } (X : OD {suc n}) → Cardinal X cardinal {n} X = record { @@ -654,24 +652,31 @@ cardinal-p x with p∨¬p ( Onto (Ord x) X ) cardinal-p x | case1 True = record { proj1 = x ; proj2 = yes True } cardinal-p x | case2 False = record { proj1 = o∅ ; proj2 = no False } + onto-set : OD {suc n} + onto-set = record { def = λ x → {!!} } -- Onto (Ord (sup-o (λ x → proj1 (cardinal-p x)))) X } onto : Onto (Ord (sup-o (λ x → proj1 (cardinal-p x)))) X onto = record { xmap = xmap ; ymap = ymap - ; xmap-on-Y = xmap-on-Y ; ymap-on-X = ymap-on-X ; onto-iso = onto-iso } where + -- + -- Ord cardinal itself has no onto map, but if we have x o< cardinal, there is one + -- od→ord X o< cardinal, so if we have def Y y or def X y, there is an Onto (Ord y) X Y = (Ord (sup-o (λ x → proj1 (cardinal-p x)))) - xmap : (x : Ordinal {suc n}) → Ordinal {suc n} + lemma1 : (y : Ordinal {suc n}) → def Y y → Onto (Ord y) X + lemma1 y y<Y with sup-o< {suc n} {λ x → proj1 ( cardinal-p x)} {y} + ... | t = {!!} + lemma2 : def Y (od→ord X) + lemma2 = {!!} + xmap : (x : Ordinal {suc n}) → def Y x → Ordinal {suc n} xmap = {!!} - ymap : (y : Ordinal {suc n}) → Ordinal {suc n} + ymap : (y : Ordinal {suc n}) → def X y → Ordinal {suc n} ymap = {!!} - xmap-on-Y : (x : Ordinal {suc n} ) → def Y x → def X (xmap x) - xmap-on-Y = {!!} - ymap-on-X : (y : Ordinal {suc n} ) → def X y → def Y (ymap y) + ymap-on-X : {y : Ordinal {suc n} } → (lty : def X y ) → def Y (ymap y lty) ymap-on-X = {!!} - onto-iso : (y : Ordinal {suc n} ) → def X y → xmap ( ymap y ) ≡ y + onto-iso : {y : Ordinal {suc n} } → (lty : def X y ) → xmap (ymap y lty) (ymap-on-X lty ) ≡ y onto-iso = {!!} cmax : (y : Ordinal) → sup-o (λ x → proj1 (cardinal-p x)) o< y → ¬ Onto (Ord y) X cmax y lt ontoy = o<> lt (o<-subst {suc n} {_} {_} {y} {sup-o (λ x → proj1 (cardinal-p x))} @@ -681,4 +686,19 @@ lemma | case1 x = refl lemma | case2 not = ⊥-elim ( not ontoy ) +func : {n : Level} → (f : Ordinal {suc n} → Ordinal {suc n}) → OD {suc n} +func {n} f = record { def = λ y → (x : Ordinal {suc n}) → y ≡ f x } +Func : {n : Level} → OD {suc n} +Func {n} = record { def = λ x → (f : Ordinal {suc n} → Ordinal {suc n}) → x ≡ od→ord (func f) } + +odmap : {n : Level} → { x : OD {suc n} } → Func ∋ x → Ordinal {suc n} → OD {suc n} +odmap {n} {f} lt x = record { def = λ y → def f y } + + + ----- + -- All cardinal is ℵ0, since we are working on Countable Ordinal, + -- Power ω is larger than ℵ0, so it has no cardinal. + + +
--- a/ordinal.agda Mon Aug 05 17:02:37 2019 +0900 +++ b/ordinal.agda Tue Aug 06 15:50:14 2019 +0900 @@ -29,6 +29,12 @@ _o<_ : {n : Level} ( x y : Ordinal ) → Set n _o<_ x y = (lv x < lv y ) ∨ ( ord x d< ord y ) +o<-dom : {n : Level} { x y : Ordinal {n}} → x o< y → Ordinal +o<-dom {n} {x} _ = x + +o<-cod : {n : Level} { x y : Ordinal {n}} → x o< y → Ordinal +o<-cod {n} {_} {y} _ = y + s<refl : {n : Level } {lx : Nat } { x : OrdinalD {n} lx } → x d< OSuc lx x s<refl {n} {lv} {Φ lv} = Φ< s<refl {n} {lv} {OSuc lv x} = s< s<refl