Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 519:ef5dde91fa80
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 16 Apr 2022 18:52:48 +0900 |
parents | fc16a22225d9 |
children | 5e364d55bccc |
files | src/ODUtil.agda src/zorn.agda |
diffstat | 2 files changed, 17 insertions(+), 8 deletions(-) [+] |
line wrap: on
line diff
--- a/src/ODUtil.agda Sat Apr 16 18:14:48 2022 +0900 +++ b/src/ODUtil.agda Sat Apr 16 18:52:48 2022 +0900 @@ -70,6 +70,9 @@ ⊆→= {F} {U} FU UF = record { eq→ = λ {x} lt → subst (λ k → odef U k) &iso (incl FU (subst (λ k → odef F k) (sym &iso) lt) ) ; eq← = λ {x} lt → subst (λ k → odef F k) &iso (incl UF (subst (λ k → odef U k) (sym &iso) lt) ) } +¬A∋x→A≡od∅ : (A : HOD) → {x : HOD} → A ∋ x → ¬ ( & A ≡ o∅ ) +¬A∋x→A≡od∅ A {x} ax a=0 = ¬x<0 ( subst (λ k → & x o< k) a=0 (c<→o< ax )) + subset-lemma : {A x : HOD } → ( {y : HOD } → x ∋ y → (A ∩ x ) ∋ y ) ⇔ ( x ⊆ A ) subset-lemma {A} {x} = record { proj1 = λ lt → record { incl = λ x∋z → proj1 (lt x∋z) }
--- a/src/zorn.agda Sat Apr 16 18:14:48 2022 +0900 +++ b/src/zorn.agda Sat Apr 16 18:52:48 2022 +0900 @@ -345,15 +345,21 @@ zc9 y cy with ODC.∋-p O (IChainSet {A} (me (subst (OD.def (od A)) (sym &iso) (is-elm x)))) (* y) ... | no not = ⊥-elim (not (subst (λ k → odef (IChainSet {A} (me (subst (OD.def (od A)) (sym &iso) (is-elm x)))) k ) (sym &iso) cy)) ... | yes cy1 with is-o∅ (& (Nx y (proj1 cy) )) - ... | yes no-next = {!!} + ... | yes no-next = ⊥-elim zc16 where + zc18 : IChainSup> A (d→∋ A (is-elm x)) → ⊥ + zc18 ics = ¬A∋x→A≡od∅ (Nx y (proj1 cy) ) ⟪ {!!} , ? ⟫ no-next + zc17 : IsFC A {& (elm x)} (d→∋ A (is-elm x)) (& (* y)) + zc17 = record { icf = cy ; c-finite = λ icsup → zc18 icsup } + zc16 : ⊥ + zc16 = ¬A∋x→A≡od∅ HG ⟪ subst (λ k → odef A k ) (sym &iso) (proj1 cy ) , zc17 ⟫ inifite ... | no not = record { y = zc14 ; A∋y = IChainSup>.A∋y (proj2 zc12) ; y>x = zc15 } where - zc13 = ODC.minimal O (Nx y (proj1 cy)) (λ eq → not (=od∅→≡o∅ eq )) - zc12 : odef A (& zc13 ) ∧ IChainSup> A (subst (λ k → odef A k) (sym &iso) (proj1 cy) ) - zc12 = ODC.x∋minimal O (Nx y (proj1 cy)) (λ eq → not (=od∅→≡o∅ eq )) - zc14 : Ordinal - zc14 = IChainSup>.y (proj2 zc12) - zc15 : * y < * ( IChainSup>.y (proj2 (ODC.x∋minimal O (Nx y (proj1 cy)) (λ eq → not (=od∅→≡o∅ eq)))) ) - zc15 = IChainSup>.y>x (proj2 zc12) + zc13 = ODC.minimal O (Nx y (proj1 cy)) (λ eq → not (=od∅→≡o∅ eq )) + zc12 : odef A (& zc13 ) ∧ IChainSup> A (subst (λ k → odef A k) (sym &iso) (proj1 cy) ) + zc12 = ODC.x∋minimal O (Nx y (proj1 cy)) (λ eq → not (=od∅→≡o∅ eq )) + zc14 : Ordinal + zc14 = IChainSup>.y (proj2 zc12) + zc15 : * y < * ( IChainSup>.y (proj2 (ODC.x∋minimal O (Nx y (proj1 cy)) (λ eq → not (=od∅→≡o∅ eq)))) ) + zc15 = IChainSup>.y>x (proj2 zc12) all-climb-case : { A : HOD } → (0<A : o∅ o< & A) → IsPartialOrderSet A → (( x : Element A) → OSup> A (d→∋ A (is-elm x) ))