Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 845:ef7c721b32dc
csupf in not come from ZChain itself
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 31 Aug 2022 22:08:33 +0900 |
parents | 0855fce6ee92 |
children | 95bbeb622f6e |
files | src/zorn.agda |
diffstat | 1 files changed, 20 insertions(+), 17 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Wed Aug 31 19:48:12 2022 +0900 +++ b/src/zorn.agda Wed Aug 31 22:08:33 2022 +0900 @@ -308,6 +308,16 @@ -- ordering is proved here for totality and sup + supf∈A : {b : Ordinal} → b o≤ z → odef A (supf b) + supf∈A {b} b≤z = subst (λ k → odef A k ) (sym (supf-is-sup b≤z)) ( SUP.as ( sup b≤z ) ) + + csupf0 : {b : Ordinal} → b o≤ z → odef (UnionCF A f mf ay supf (supf b)) (supf b) + csupf0 {b} b≤z = ⟪ supf∈A b≤z , ch-is-sup (supf b) o≤-refl ? (init zc10 zc11 ) ⟫ where + zc11 : supf (supf b) ≡ supf b + zc11 = ? + zc10 : odef A (supf (supf b)) + zc10 = subst (λ k → odef A k ) (sym zc11) ( supf∈A b≤z ) + fcy<sup : {u w : Ordinal } → u o< z → FClosure A f y w → (w ≡ supf u ) ∨ ( w << supf u ) -- different from order because y o< supf fcy<sup {u} {w} u<z fc with SUP.x<sup (sup (o<→≤ u<z)) ⟪ subst (λ k → odef A k ) (sym &iso) (A∋fc {A} y f mf fc) , ch-init (subst (λ k → FClosure A f y k) (sym &iso) fc ) ⟫ @@ -940,31 +950,24 @@ ... | case1 eq = eq ... | case2 z<x = ⊥-elim (¬p<x<op ⟪ px<z , subst (λ k → z o< k ) (sym (Oprev.oprev=x op)) z<x ⟫ ) zc31 : {w : HOD} → UnionCF A f mf ay supf1 z ∋ w → (w ≡ SUP.sup sup1) ∨ (w < SUP.sup sup1) - zc31 = ? + zc31 {w} lt with zc30 + ... | refl = SUP.x<sup sup1 (subst (λ k → odef k (& w)) (sym pchain0=1) lt ) sup=u : {b : Ordinal} (ab : odef A b) → b o≤ x → IsSup A (UnionCF A f mf ay supf1 b) ab → supf1 b ≡ b sup=u {b} ab b≤x is-sup with trio< b px - ... | tri< a ¬b ¬c = ZChain.sup=u zc ab (o<→≤ a) record { x<sup = λ lt → IsSup.x<sup is-sup ? } - ... | tri≈ ¬a b ¬c = ZChain.sup=u zc ab (o≤-refl0 b) record { x<sup = λ lt → IsSup.x<sup is-sup ? } - ... | tri> ¬a ¬b px<b = ? where -- ⊥-elim (¬sp=x zcsup ) where + ... | tri< a ¬b ¬c = ZChain.sup=u zc ab (o<→≤ a) record { x<sup = λ lt → IsSup.x<sup is-sup (UnionCF0⊆1 (o<→≤ a) lt) } + ... | tri≈ ¬a b ¬c = ZChain.sup=u zc ab (o≤-refl0 b) record { x<sup = λ lt → IsSup.x<sup is-sup (UnionCF0⊆1 (o≤-refl0 b) lt) } + ... | tri> ¬a ¬b px<b = ⊥-elim (¬sp=x zcsup ) where zc30 : x ≡ b zc30 with osuc-≡< b≤x ... | case1 eq = sym (eq) ... | case2 b<x = ⊥-elim (¬p<x<op ⟪ px<b , subst (λ k → b o< k ) (sym (Oprev.oprev=x op)) b<x ⟫ ) - zcsup : ? - zcsup = ? -- with zc30 - -- ... | refl = case1 record { ax = ab ; is-sup = record { x<sup = λ lt → IsSup.x<sup is-sup ? } } + zcsup : xSUP (UnionCF A f mf ay supf0 px) x + zcsup with zc30 + ... | refl = record { ax = ab ; is-sup = record { x<sup = λ {w} lt → + IsSup.x<sup is-sup (subst (λ k → odef k w) pchain0=1 lt) } } csupf : {b : Ordinal} → b o≤ x → odef (UnionCF A f mf ay supf1 (supf1 b)) (supf1 b) - csupf {b} b≤x with trio< b px | inspect supf0 b - ... | tri< a ¬b ¬c | _ = ? where - zc31 = ZChain.csupf zc (o<→≤ a ) - ... | tri≈ ¬a refl ¬c | _ = ? where - zc32 = ZChain.csupf zc o≤-refl - ... | tri> ¬a ¬b px<b | record { eq = eq1 } = ? where - zc30 : x ≡ b - zc30 with osuc-≡< b≤x - ... | case1 eq = sym (eq) - ... | case2 b<x = ⊥-elim (¬p<x<op ⟪ px<b , subst (λ k → b o< k ) (sym (Oprev.oprev=x op)) b<x ⟫ ) + csupf {b} b≤x = ? sis : {z : Ordinal} (z≤x : z o≤ x) → supf1 z ≡ & (SUP.sup (sup z≤x)) sis {z} z≤x = zc40 where zc40 : supf1 z ≡ & (SUP.sup (sup z≤x)) -- direct with statment causes error