Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 949:efc833407350
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 31 Oct 2022 23:27:55 +0900 |
parents | 51556591c879 |
children | 6e126013f056 |
files | src/zorn.agda |
diffstat | 1 files changed, 17 insertions(+), 2 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Mon Oct 31 18:34:06 2022 +0900 +++ b/src/zorn.agda Mon Oct 31 23:27:55 2022 +0900 @@ -466,6 +466,8 @@ is-max : {a b : Ordinal } → (ca : odef (UnionCF A f mf ay supf z) a ) → supf b o< supf z → (ab : odef A b) → HasPrev A (UnionCF A f mf ay supf z) b f ∨ IsSup A (UnionCF A f mf ay supf z) ab → * a < * b → odef ((UnionCF A f mf ay supf z)) b + order : {b s z1 : Ordinal} → b o< & A → supf s o< supf b → FClosure A f (supf s) z1 → (z1 ≡ supf b) ∨ (z1 << supf b) + record Maximal ( A : HOD ) : Set (Level.suc n) where field @@ -630,7 +632,7 @@ zc1 : (x : Ordinal) → ((y₁ : Ordinal) → y₁ o< x → ZChain1 A f mf ay zc y₁) → ZChain1 A f mf ay zc x zc1 x prev with Oprev-p x -- prev is not used now.... - ... | yes op = record { is-max = is-max } where + ... | yes op = record { is-max = is-max ; order = order } where px = Oprev.oprev op zc-b<x : {b : Ordinal } → ZChain.supf zc b o< ZChain.supf zc x → b o< osuc px zc-b<x {b} lt = subst (λ k → b o< k ) (sym (Oprev.oprev=x op)) (ZChain.supf-inject zc lt ) @@ -659,7 +661,7 @@ m09 {s} {z} s<b fcz = order b<A s<b fcz m06 : ChainP A f mf ay supf b m06 = record { fcy<sup = m08 ; order = m09 ; supu=u = m05 } - ... | no lim = record { is-max = is-max } where + ... | no lim = record { is-max = is-max ; order = order } where is-max : {a : Ordinal} {b : Ordinal} → odef (UnionCF A f mf ay supf x) a → ZChain.supf zc b o< ZChain.supf zc x → (ab : odef A b) → HasPrev A (UnionCF A f mf ay supf x) b f ∨ IsSup A (UnionCF A f mf ay supf x) ab → @@ -1529,6 +1531,19 @@ z45 p = subst (λ k → (* (cf nmx k) ≡ * d) ∨ (* (cf nmx k) < * d)) (sym x=fy) p z48 : supf mc << d z48 = sc<<d {mc} asc spd + z53 : supf u o< supf (& A) + z53 = ordtrans<-≤ u<x (ZChain.supf-mono zc (o<→≤ d<A) ) + z52 : ( u ≡ mc ) ∨ ( u << mc ) + z52 = MinSUP.x<sup msp1 ⟪ subst (λ k → odef A k ) (ChainP.supu=u is-sup1) (A∋fcs _ _ (cf-is-≤-monotonic nmx) fc) + , ch-is-sup u z53 is-sup1 (init (ZChain.asupf zc) (ChainP.supu=u is-sup1)) ⟫ + z51 : supf u o≤ supf mc + z51 = ? --with z52 + -- ... | case1 eq = ? + -- ... | case2 lt = ? -- ZChain.supf-<= zc (case2 ? ) + z49 : supf u o< supf mc → (cf nmx (cf nmx y) ≡ supf mc) ∨ (* (cf nmx (cf nmx y)) < * (supf mc) ) + z49 su<smc = ZChain1.order (SZ1 (cf nmx) (cf-is-≤-monotonic nmx) as0 zc (& A)) mc<A su<smc (fsuc _ ( fsuc _ fc )) + z50 : (cf nmx (cf nmx y) ≡ supf d) ∨ (* (cf nmx (cf nmx y)) < * (supf d) ) + z50 = ZChain1.order (SZ1 (cf nmx) (cf-is-≤-monotonic nmx) as0 zc (& A)) d<A u<x (fsuc _ ( fsuc _ fc )) z47 : {mc d1 : Ordinal } {asc : odef A (supf mc)} (spd : MinSUP A (uchain (cf nmx) (cf-is-≤-monotonic nmx) asc )) → * (cf nmx (cf nmx y)) < * d1 z47 {mc} {d1} {asc} spd = ?