Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 977:f0d2666fe3b2
is-max on supf b o< supf x and csupf on supf x o< z is better?
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 08 Nov 2022 20:15:46 +0900 |
parents | 8fe873f0c88e |
children | |
files | src/zorn.agda |
diffstat | 1 files changed, 6 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Tue Nov 08 18:29:35 2022 +0900 +++ b/src/zorn.agda Tue Nov 08 20:15:46 2022 +0900 @@ -646,6 +646,7 @@ SZ1 : ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {init : Ordinal} (ay : odef A init) (zc : ZChain A f mf ay (& A)) (x : Ordinal) → ZChain1 A f mf ay zc x SZ1 f mf {y} ay zc x = zc1 x where + chain-mono1 : {a b c : Ordinal} → a o≤ b → odef (UnionCF A f mf ay (ZChain.supf zc) a) c → odef (UnionCF A f mf ay (ZChain.supf zc) b) c chain-mono1 {a} {b} {c} a≤b = chain-mono f mf ay (ZChain.supf zc) (ZChain.supf-mono zc) a≤b @@ -682,6 +683,7 @@ zc04 with subst (λ k → odef (UnionCF A f mf ay supf b) k ) &iso (csupf-fc b<z ss≤sb fc ) ... | ⟪ as , ch-init fc ⟫ = ⟪ proj2 (mf _ as) , ch-init (fsuc _ fc) ⟫ ... | ⟪ as , ch-is-sup u u<x is-sup fc ⟫ = ⟪ proj2 (mf _ as) , ch-is-sup u u<x is-sup (fsuc _ fc) ⟫ + order : {b s z1 : Ordinal} → b o< & A → supf s o< supf b → FClosure A f (supf s) z1 → (z1 ≡ supf b) ∨ (z1 << supf b) order {b} {s} {z1} b<z ss<sb fc = zc04 where zc00 : ( z1 ≡ MinSUP.sup (ZChain.minsup zc (o<→≤ b<z) )) ∨ ( z1 << MinSUP.sup ( ZChain.minsup zc (o<→≤ b<z) ) ) @@ -729,13 +731,13 @@ * a < * b → odef (UnionCF A f mf ay supf x) b is-max {a} {b} ua sb<sx ab P a<b with ODC.or-exclude O P is-max {a} {b} ua sb<sx ab P a<b | case1 has-prev = is-max-hp x {a} {b} ua ab has-prev a<b - is-max {a} {b} ua sb<sx ab P a<b | case2 is-sup with IsSUP.x≤sup (proj2 is-sup) (init-uchain A f mf ay ) + is-max {a} {b} ua b<x ab P a<b | case2 is-sup with IsSUP.x≤sup (proj2 is-sup) (init-uchain A f mf ay ) ... | case1 b=y = ⟪ subst (λ k → odef A k ) b=y ay , ch-init (subst (λ k → FClosure A f y k ) b=y (init ay refl )) ⟫ - ... | case2 y<b = ⟪ ab , ch-is-sup b ? m06 (subst (λ k → FClosure A f k b) (sym m05) (init ab refl)) ⟫ where + ... | case2 y<b = ⟪ ab , ch-is-sup b sb<sx m06 (subst (λ k → FClosure A f k b) (sym m05) (init ab refl)) ⟫ where m09 : b o< & A m09 = subst (λ k → k o< & A) &iso ( c<→o< (subst (λ k → odef A k ) (sym &iso ) ab)) - b<x : b o< x - b<x = ZChain.supf-inject zc ? + sb<sx : supf b o< supf x + sb<sx = ? m07 : {z : Ordinal} → FClosure A f y z → z <= ZChain.supf zc b m07 {z} fc = ZChain.fcy<sup zc (o<→≤ m09) fc m08 : {s z1 : Ordinal} → ZChain.supf zc s o< ZChain.supf zc b