changeset 977:f0d2666fe3b2

is-max on supf b o< supf x and csupf on supf x o< z is better?
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Tue, 08 Nov 2022 20:15:46 +0900
parents 8fe873f0c88e
children
files src/zorn.agda
diffstat 1 files changed, 6 insertions(+), 4 deletions(-) [+]
line wrap: on
line diff
--- a/src/zorn.agda	Tue Nov 08 18:29:35 2022 +0900
+++ b/src/zorn.agda	Tue Nov 08 20:15:46 2022 +0900
@@ -646,6 +646,7 @@
      SZ1 : ( f : Ordinal → Ordinal )  (mf : ≤-monotonic-f A f)
         {init : Ordinal} (ay : odef A init) (zc : ZChain A f mf ay (& A)) (x : Ordinal)   → ZChain1 A f mf ay zc x
      SZ1 f mf {y} ay zc x = zc1 x where
+
         chain-mono1 :  {a b c : Ordinal} → a o≤ b
             → odef (UnionCF A f mf ay (ZChain.supf zc) a) c → odef (UnionCF A f mf ay (ZChain.supf zc) b) c
         chain-mono1  {a} {b} {c} a≤b = chain-mono f mf ay (ZChain.supf zc) (ZChain.supf-mono zc) a≤b
@@ -682,6 +683,7 @@
                 zc04 with subst (λ k → odef (UnionCF A f mf ay supf b) k ) &iso (csupf-fc b<z ss≤sb fc  )
                 ... | ⟪ as , ch-init fc ⟫ = ⟪ proj2 (mf _ as) , ch-init (fsuc _ fc) ⟫
                 ... | ⟪ as , ch-is-sup u u<x is-sup fc ⟫ = ⟪ proj2 (mf _ as) , ch-is-sup u u<x is-sup (fsuc _ fc) ⟫
+
         order : {b s z1 : Ordinal} → b o< & A → supf s o< supf b → FClosure A f (supf s) z1 → (z1 ≡ supf b) ∨ (z1 << supf b)
         order {b} {s} {z1} b<z ss<sb fc = zc04 where
           zc00 : ( z1  ≡  MinSUP.sup (ZChain.minsup zc (o<→≤ b<z) )) ∨ ( z1  << MinSUP.sup ( ZChain.minsup zc (o<→≤ b<z) ) )
@@ -729,13 +731,13 @@
               * a < * b → odef (UnionCF A f mf ay supf x) b
            is-max {a} {b} ua sb<sx ab P a<b with ODC.or-exclude O P
            is-max {a} {b} ua sb<sx ab P a<b | case1 has-prev = is-max-hp x {a} {b} ua ab has-prev a<b
-           is-max {a} {b} ua sb<sx ab P a<b | case2 is-sup with IsSUP.x≤sup (proj2 is-sup) (init-uchain A f mf ay )
+           is-max {a} {b} ua b<x ab P a<b | case2 is-sup with IsSUP.x≤sup (proj2 is-sup) (init-uchain A f mf ay )
            ... | case1 b=y = ⟪ subst (λ k → odef A k ) b=y ay , ch-init (subst (λ k → FClosure A f y k ) b=y (init ay refl ))  ⟫
-           ... | case2 y<b = ⟪ ab , ch-is-sup b ? m06 (subst (λ k → FClosure A f k b) (sym m05) (init ab refl))  ⟫ where
+           ... | case2 y<b = ⟪ ab , ch-is-sup b sb<sx m06 (subst (λ k → FClosure A f k b) (sym m05) (init ab refl))  ⟫ where
               m09 : b o< & A
               m09 = subst (λ k → k o< & A) &iso ( c<→o< (subst (λ k → odef A k ) (sym &iso ) ab))
-              b<x : b o< x
-              b<x  = ZChain.supf-inject zc ?
+              sb<sx : supf b o< supf  x
+              sb<sx  = ?
               m07 : {z : Ordinal} → FClosure A f y z → z <= ZChain.supf zc b
               m07 {z} fc = ZChain.fcy<sup zc (o<→≤ m09) fc
               m08 : {s z1 : Ordinal} → ZChain.supf zc s o< ZChain.supf zc b