Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 145:f0fa9a755513
all done but ...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 08 Jul 2019 18:19:56 +0900 |
parents | 3ba37037faf4 |
children | 2eafa89733ed |
files | HOD.agda |
diffstat | 1 files changed, 16 insertions(+), 14 deletions(-) [+] |
line wrap: on
line diff
--- a/HOD.agda Mon Jul 08 13:21:14 2019 +0900 +++ b/HOD.agda Mon Jul 08 18:19:56 2019 +0900 @@ -300,18 +300,15 @@ _,_ : OD {suc n} → OD {suc n} → OD {suc n} x , y = Ord (omax (od→ord x) (od→ord y)) _∩_ : ( A B : ZFSet ) → ZFSet - A ∩ B = record { def = λ x → def A x ∧ def B x } -- Select (A , B) ( λ x → ( A ∋ x ) ∧ (B ∋ x) ) + A ∩ B = record { def = λ x → def A x ∧ def B x } Union : OD {suc n} → OD {suc n} - Union U = Replace ( record { def = λ x → osuc x o< od→ord U } ) ( λ x → U ∩ x ) - -- power : ∀ X ∃ A ∀ t ( t ∈ A ↔ ( ∀ {x} → t ∋ x → X ∋ x ) + Union U = record { def = λ y → def U (osuc y) } _∈_ : ( A B : ZFSet ) → Set (suc n) A ∈ B = B ∋ A _⊆_ : ( A B : ZFSet ) → ∀{ x : ZFSet } → Set (suc n) _⊆_ A B {x} = A ∋ x → B ∋ x Power : OD {suc n} → OD {suc n} Power A = Replace (Def (Ord (od→ord A))) ( λ x → A ∩ x ) - -- _∪_ : ( A B : ZFSet ) → ZFSet - -- A ∪ B = Select (A , B) ( λ x → (A ∋ x) ∨ ( B ∋ x ) ) {_} : ZFSet → ZFSet { x } = ( x , x ) @@ -346,21 +343,26 @@ empty x (case1 ()) empty x (case2 ()) - union-lemma : {n : Level } {X z u : OD {suc n} } → (X ∋ u) → (u ∋ z) → osuc ( od→ord z ) o< od→ord u → X ∋ Ord (osuc ( od→ord z ) ) - union-lemma = {!!} + union-d : (X : OD {suc n}) → OD {suc n} + union-d X = record { def = λ y → def X (osuc y) } union-u : {X z : OD {suc n}} → (U>z : Union X ∋ z ) → OD {suc n} union-u {X} {z} U>z = Ord ( osuc ( od→ord z ) ) union→ : (X z u : OD) → (X ∋ u) ∧ (u ∋ z) → Union X ∋ z union→ X z u xx with trio< ( od→ord u ) ( osuc ( od→ord z )) union→ X z u xx | tri< a ¬b ¬c with osuc-< a (c<→o< (proj2 xx)) union→ X z u xx | tri< a ¬b ¬c | () - union→ X z u xx | tri≈ ¬a b ¬c = {!!} - union→ X z u xx | tri> ¬a ¬b c = {!!} --- osuc ( od→ord z )) o< od→ord u o< od→ord X - -- def-subst {suc n} {_} {_} {X} {osuc (od→ord z)} (union-lemma {n} {X} {z} {u} (proj1 xx) (proj2 xx) c ) refl (sym ord-Ord) + union→ X z u xx | tri≈ ¬a b ¬c = def-subst {suc n} {_} {_} {X} {osuc (od→ord z)} (proj1 xx) refl b + union→ X z u xx | tri> ¬a ¬b c = def-subst lemma1 (sym lemma0) diso where + lemma0 : X ≡ Ord (od→ord X) + lemma0 = sym Ord-ord-≡ + lemma : osuc (od→ord z) o< od→ord X + lemma = ordtrans c ( c<→o< ( proj1 xx ) ) + lemma1 : Ord ( od→ord X) ∋ ord→od (osuc (od→ord z) ) + lemma1 = o<-subst lemma (sym diso) refl union← : (X z : OD) (X∋z : Union X ∋ z) → (X ∋ union-u {X} {z} X∋z ) ∧ (union-u {X} {z} X∋z ∋ z ) - union← X z X∋z = record { proj1 = lemma ; proj2 = <-osuc } where - lemma : X ∋ union-u {X} {z} X∋z - lemma = def-subst {suc n} {_} {_} {X} {od→ord (Ord (osuc ( od→ord z )))} {!!} refl ord-Ord + union← X z UX∋z = record { proj1 = lemma ; proj2 = <-osuc } where + lemma : X ∋ union-u {X} {z} UX∋z + lemma = def-subst {suc n} {_} {_} {X} {od→ord (Ord (osuc ( od→ord z )))} UX∋z refl ord-Ord ψiso : {ψ : OD {suc n} → Set (suc n)} {x y : OD {suc n}} → ψ x → x ≡ y → ψ y ψiso {ψ} t refl = t @@ -508,7 +510,7 @@ lemma : {y : Ordinal {suc n}} → def (Union (x , (x , x))) y ≡ osuc y o< osuc (osuc (od→ord x)) lemma {y} = let open ≡-Reasoning in begin def (Union (x , (x , x))) y - ≡⟨ {!!} ⟩ + ≡⟨⟩ def ( Ord ( omax (od→ord x) (od→ord (Ord (omax (od→ord x) (od→ord x) )) ))) ( osuc y ) ≡⟨⟩ osuc y o< omax (od→ord x) (od→ord (Ord (omax (od→ord x) (od→ord x) )) )