Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 215:f15eaa7c5932
Ord< : {n : Level} { x y : Ordinal {suc n}} → y o< x → Ord x ∋ Ord y is bad decision
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 02 Aug 2019 21:31:45 +0900 |
parents | e05575588191 |
children | 5b9b6ef971dd |
files | OD.agda |
diffstat | 1 files changed, 0 insertions(+), 25 deletions(-) [+] |
line wrap: on
line diff
--- a/OD.agda Fri Aug 02 16:27:53 2019 +0900 +++ b/OD.agda Fri Aug 02 21:31:45 2019 +0900 @@ -308,31 +308,6 @@ {_} : ZFSet → ZFSet { x } = ( x , x ) - u-osuc : { x : Ordinal {suc n}} → Union (ord→od x , (ord→od x , ord→od x )) == ord→od (osuc x) - u-osuc {x} = record { eq→ = lemma1 ; eq← = lemma2 } where - lemma1 : {y : Ordinal} → def (Union (ord→od x , (ord→od x , ord→od x))) y → def (ord→od (osuc x)) y - lemma1 {y} lt = {!!} - lemma2 : {y : Ordinal} → def (ord→od (osuc x)) y → def (Union (ord→od x , (ord→od x , ord→od x))) y - lemma2 {y} lt not = {!!} - - union-ord : { x : Ordinal {suc n}} → Union (Ord x) == record { def = λ y → osuc y o< x } - union-ord {x} = record { eq→ = lemma1 ; eq← = lemma2 } where - lemma1 : {y : Ordinal} → def (Union (Ord x)) y → osuc y o< x - lemma1 {y} lt with trio< (osuc y) x - lemma1 {y} lt | tri< a ¬b ¬c = a - lemma1 {y} lt | tri≈ ¬a refl ¬c = ⊥-elim ( lt (λ u → lemma3 {u}) ) where - lemma3 : {u : Ordinal} → (u o< osuc y) ∧ def (ord→od u) y → ⊥ - lemma3 {u} lt with osuc-≡< (proj1 lt) - lemma3 {u} lt | case1 refl = o<¬≡ refl (o<-subst ( def→o< {n} {ord→od u} (proj2 lt)) (sym diso) refl ) - lemma3 {u} lt | case2 lt1 = o<> lt1 (o<-subst ( def→o< {n} {ord→od u} (proj2 lt)) refl diso ) - lemma1 {y} lt | tri> ¬a ¬b c = ⊥-elim ( lt (λ u → lemma4 {u} ) ) where - lemma4 : {u : Ordinal} → (u o< x) ∧ def (ord→od u) y → ⊥ -- c : x o< osuc y - lemma4 {u} lt with osuc-≡< c - lemma4 {u} lt | case1 refl = o<> (proj1 lt) (o<-subst ( def→o< {n} {ord→od u} (proj2 lt)) refl diso ) - lemma4 {u} lt | case2 lt1 = o<> ( ordtrans ( proj1 lt) lt1 ) (o<-subst ( def→o< {n} {ord→od u} (proj2 lt)) refl diso ) - lemma2 : {y : Ordinal} → osuc y o< x → def (Union (Ord x)) y - lemma2 {y} lt not = not (osuc y) record { proj1 = lt ; proj2 = {!!} } -- lt : def (Ord x) (osuc y) - data infinite-d : ( x : Ordinal {suc n} ) → Set (suc n) where iφ : infinite-d o∅ isuc : {x : Ordinal {suc n} } → infinite-d x →