changeset 1211:f17d060e0bda

UFLP→FIP FIP→UFLP with Zorn done
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sat, 04 Mar 2023 11:39:46 +0900
parents 806109d79562
children 3922fc5c6f9e
files src/Tychonoff.agda
diffstat 1 files changed, 64 insertions(+), 63 deletions(-) [+]
line wrap: on
line diff
--- a/src/Tychonoff.agda	Sat Mar 04 10:26:35 2023 +0900
+++ b/src/Tychonoff.agda	Sat Mar 04 11:39:46 2023 +0900
@@ -35,10 +35,10 @@
 open import filter O
 open import OPair O
 open import Topology O
--- open import maximum-filter O
+open import maximum-filter O
 
-open Filter  
-open Topology 
+open Filter
+open Topology
 
 -- FIP is UFL
 
@@ -56,7 +56,7 @@
    field
        limit : Ordinal
        P∋limit : odef P limit
-       is-limit : {v : Ordinal} → Neighbor TP limit v → (* v) ⊆ filter F
+       is-limit : {v : Ordinal} → Neighbor TP limit v → filter F ∋ (* v)
 
 UFLP→FIP : {P : HOD} (TP : Topology P) →
    ((F : Filter {Power P} {P} (λ x → x) ) (UF : ultra-filter F ) → UFLP TP F UF ) → FIP TP
@@ -96,14 +96,14 @@
      -- filter base is not empty necessary for generating ultra filter
      nc : {X : Ordinal} → o∅ o< X → (CSX : * X ⊆ CS TP) → (fip : fip CSX) → HOD
      nc {X} 0<X CSX fip = ODC.minimal O (* X) (0<P→ne (subst (λ k → o∅ o< k) (sym &iso) 0<X) ) -- an element of X
-     N∋nc :{X : Ordinal} → (0<X : o∅ o< X) → (CSX : * X ⊆ CS TP) 
+     N∋nc :{X : Ordinal} → (0<X : o∅ o< X) → (CSX : * X ⊆ CS TP)
         → (fip : fip CSX) → odef (N CSX fip) (& (nc 0<X CSX fip) )
      N∋nc {X} 0<X CSX fip = record { b = X ; x =  & e ;  b⊆X = λ x → x ; sb = gi Xe ; u⊆P = nn02 ; x⊆u = λ x → x } where
           e : HOD  -- we have an element of X
           e = ODC.minimal O (* X) (0<P→ne (subst (λ k → o∅ o< k) (sym &iso) 0<X) )
           Xe : odef (* X) (& e)
           Xe = ODC.x∋minimal O (* X) (0<P→ne (subst (λ k → o∅ o< k) (sym &iso) 0<X) )
-          nn01 = ODC.minimal O (* (& e)) (0<P→ne (subst (λ k → o∅ o< k) (sym &iso) (fip (gi Xe))) ) 
+          nn01 = ODC.minimal O (* (& e)) (0<P→ne (subst (λ k → o∅ o< k) (sym &iso) (fip (gi Xe))) )
           nn02 : * (& (nc 0<X CSX fip)) ⊆ P
           nn02 = subst (λ k → k ⊆ P ) (sym *iso) (cs⊆L TP (CSX Xe ) )
 
@@ -140,7 +140,7 @@
                  → ⟪ subst (λ k → odef k w) *iso ( FBase.x⊆u Np (proj1 xpq)) ,  subst (λ k → odef k w) *iso ( FBase.x⊆u Nq (proj2 xpq)) ⟫ )
      --
      -- it contains no empty sets becase it is a finite intersection ( Subbase (* X) x )
-     -- 
+     --
      proper : {X : Ordinal} → (CSX : * X ⊆ CS TP) → (fip : fip {X} CSX) → ¬ (N CSX fip ∋ od∅)
      proper {X} CSX fip record { b = b ; x = x ; b⊆X = b⊆X ; sb = sb ; u⊆P = u⊆P ; x⊆u = x⊆u } = o≤> x≤0 (fip (fp00 _ _ b⊆X sb)) where
           x≤0 : x o< osuc  o∅
@@ -149,21 +149,21 @@
           fp00 b y b<X (gi by ) = gi ( b<X by )
           fp00 b _ b<X (g∩ {y} {z} sy sz ) = g∩ (fp00 _ _ b<X sy) (fp00 _ _ b<X sz)
      --
-     -- then we have maximum ultra filter 
+     -- then we have maximum ultra filter
      --
-     maxf : {X : Ordinal} → (CSX : * X ⊆ CS TP) → (fp : fip {X} CSX) → MaximumFilter (λ x → x) (F CSX fp)
-     maxf {X} CSX fp = ? -- F→Maximum {Power P} {P} (λ x → x) (CAP P)  (F CSX fp) 0<PP (N∋nc CSX fp) (proper CSX fp)
-     mf : {X : Ordinal} → (CSX : * X ⊆ CS TP) → (fp : fip {X} CSX) → Filter {Power P} {P} (λ x → x)
-     mf {X} CSX fp =  MaximumFilter.mf (maxf CSX fp) 
-     ultraf : {X : Ordinal} → o∅ o< X → (CSX : * X ⊆ CS TP) → (fp : fip {X} CSX) → ultra-filter ( mf CSX fp)
-     ultraf {X} 0<X CSX fp = ? -- F→ultra {Power P} {P} (λ x → x) (CAP P) (F CSX fp)  0<PP (N∋nc CSX fp) (proper CSX fp)
+     maxf : {X : Ordinal} → o∅ o< X → (CSX : * X ⊆ CS TP) → (fp : fip {X} CSX) → MaximumFilter (λ x → x) (F CSX fp)
+     maxf {X} 0<X CSX fp = F→Maximum {Power P} {P} (λ x → x) (CAP P)  (F CSX fp) 0<PP (N∋nc 0<X CSX fp) (proper CSX fp)
+     mf : {X : Ordinal} → o∅ o< X → (CSX : * X ⊆ CS TP) → (fp : fip {X} CSX) → Filter {Power P} {P} (λ x → x)
+     mf {X} 0<X CSX fp =  MaximumFilter.mf (maxf 0<X CSX fp)
+     ultraf : {X : Ordinal} → (0<X : o∅ o< X ) → (CSX : * X ⊆ CS TP) → (fp : fip {X} CSX) → ultra-filter ( mf 0<X CSX fp)
+     ultraf {X} 0<X CSX fp = F→ultra {Power P} {P} (λ x → x) (CAP P) (F CSX fp)  0<PP (N∋nc 0<X CSX fp) (proper CSX fp)
      --
      -- so i has a limit as a limit of UIP
      --
      limit : {X : Ordinal} → (CSX : * X ⊆ CS TP) → fip {X} CSX → Ordinal
      limit {X} CSX fp with trio< o∅ X
-     ... | tri< 0<X ¬b ¬c = UFLP.limit ( uflp ( mf CSX fp ) (ultraf 0<X CSX fp))
-     ... | tri≈ ¬a 0=X ¬c = o∅ 
+     ... | tri< 0<X ¬b ¬c = UFLP.limit ( uflp ( mf 0<X CSX fp ) (ultraf 0<X CSX fp))
+     ... | tri≈ ¬a 0=X ¬c = o∅
      ... | tri> ¬a ¬b c = ⊥-elim ( ¬x<0 c )
      --
      -- the limit is an limit of entire elements of X
@@ -172,29 +172,29 @@
      uf01 {X} CSX fp {x} xx with trio< o∅ X
      ... | tri> ¬a ¬b c = ⊥-elim ( ¬x<0 c )
      ... | tri≈ ¬a 0=X ¬c = ⊥-elim ( ¬a (subst (λ k → o∅ o< k) &iso ( ∈∅< xx )))
-     ... | tri< 0<X ¬b ¬c with ∨L\X {P} {* x} {UFLP.limit ( uflp  ( mf CSX fp ) (ultraf 0<X CSX fp))} 
-         (UFLP.P∋limit ( uflp  ( mf CSX fp ) (ultraf 0<X CSX fp)))
+     ... | tri< 0<X ¬b ¬c with ∨L\X {P} {* x} {UFLP.limit ( uflp  ( mf 0<X CSX fp ) (ultraf 0<X CSX fp))}
+         (UFLP.P∋limit ( uflp  ( mf 0<X CSX fp ) (ultraf 0<X CSX fp)))
      ... | case1 lt = lt -- odef (* x) y
-     ... | case2 nlxy = ⊥-elim (MaximumFilter.proper (maxf CSX fp) uf11 ) where
-        y = UFLP.limit ( uflp  ( mf CSX fp ) (ultraf 0<X CSX fp)) 
+     ... | case2 nlxy = ⊥-elim (MaximumFilter.proper (maxf 0<X CSX fp) uf11 ) where
+        y = UFLP.limit ( uflp  ( mf 0<X CSX fp ) (ultraf 0<X CSX fp))
         x⊆P : * x ⊆ P
         x⊆P = cs⊆L TP (CSX (subst (λ k → odef (* X) k) (sym &iso) xx))
         uf10 : odef (P \ * x ) y
         uf10 = nlxy
         uf03 : Neighbor TP y (& (P \ * x ))
-        uf03 = record { u = _ ; ou = P\CS=OS TP (CSX (subst (λ k → odef (* X) k ) (sym &iso) xx)) 
-           ; ux = subst (λ k → odef k y) (sym *iso) uf10  
+        uf03 = record { u = _ ; ou = P\CS=OS TP (CSX (subst (λ k → odef (* X) k ) (sym &iso) xx))
+           ; ux = subst (λ k → odef k y) (sym *iso) uf10
            ; v⊆P = λ {z} xz → proj1 (subst(λ k → odef k z) *iso xz )
-           ; u⊆v = λ x → x  } 
-        uf07 : * (& (* x , * x)) ⊆ * X 
+           ; u⊆v = λ x → x  }
+        uf07 : * (& (* x , * x)) ⊆ * X
         uf07 {y} lt with subst (λ k → odef k y) *iso lt
         ... | case1 refl = subst (λ k → odef (* X) k ) (sym &iso) xx
         ... | case2 refl = subst (λ k → odef (* X) k ) (sym &iso) xx
-        uf05 : odef (filter (MaximumFilter.mf (maxf CSX fp))) x
-        uf05 = MaximumFilter.F⊆mf (maxf CSX fp) record { b = & (* x , * x) ; b⊆X = uf07 
+        uf05 : odef (filter (MaximumFilter.mf (maxf 0<X CSX fp))) x
+        uf05 = MaximumFilter.F⊆mf (maxf 0<X CSX fp) record { b = & (* x , * x) ; b⊆X = uf07
            ; sb = gi (subst (λ k → odef k x) (sym *iso) (case1 (sym &iso)) )  ; u⊆P = x⊆P ; x⊆u = λ x → x  }
-        uf06 : odef (filter (MaximumFilter.mf (maxf CSX fp))) (& (P \ * x ))
-        uf06 = UFLP.is-limit ( uflp  ( mf CSX fp ) (ultraf 0<X CSX fp)) uf03 (subst (λ k → odef k y) (sym *iso) uf10) 
+        uf06 : odef (filter (MaximumFilter.mf (maxf 0<X CSX fp))) (& (P \ * x ))
+        uf06 = subst (λ k → odef (filter (MaximumFilter.mf (maxf 0<X CSX fp))) k) &iso (UFLP.is-limit ( uflp (mf 0<X CSX fp) (ultraf 0<X CSX fp)) {& (P \ * x)} uf03  )
         uf13 : & ((* x) ∩ (P \ * x )) ≡ o∅
         uf13 = subst₂ (λ j k → j ≡ k ) refl ord-od∅ (cong (&) ( ==→o≡ record { eq→ = uf14 ; eq← = λ {x} lt → ⊥-elim (¬x<0 lt) }  ) ) where
            uf14 : {y : Ordinal} → odef (* x ∩ (P \ * x)) y → odef od∅ y
@@ -202,9 +202,9 @@
         uf12 : odef (Power P) (& ((* x) ∩ (P \ * x )))
         uf12 z pz with subst (λ k → odef k z) *iso pz
         ... | ⟪ xz , ⟪ Pz , ¬xz ⟫ ⟫ = Pz
-        uf11 : filter (MaximumFilter.mf (maxf CSX fp)) ∋ od∅
-        uf11 = subst (λ k → odef (filter (MaximumFilter.mf (maxf CSX fp))) k ) uf13 
-           ( filter2 (MaximumFilter.mf (maxf CSX fp)) uf05 uf06 uf12  )
+        uf11 : filter (MaximumFilter.mf (maxf 0<X CSX fp)) ∋ od∅
+        uf11 = subst (λ k → odef (filter (MaximumFilter.mf (maxf 0<X CSX fp))) k ) (trans uf13 (sym ord-od∅))
+           ( filter2 (MaximumFilter.mf (maxf 0<X CSX fp)) (subst (λ k → odef (filter (MaximumFilter.mf (maxf 0<X CSX fp))) k) (sym &iso) uf05) uf06 uf12  )
 
 x⊆Clx : {P : HOD} (TP : Topology P) →  {x : HOD} → x ⊆ P   → x ⊆ Cl TP x
 x⊆Clx {P} TP {x}  x<p {y} xy  = ⟪ x<p xy , (λ c csc x<c → x<c xy )  ⟫
@@ -213,14 +213,14 @@
 
 FIP→UFLP : {P : HOD} (TP : Topology P) →  FIP TP
    →  (F : Filter {Power P} {P} (λ x → x)) (UF : ultra-filter F ) → UFLP {P} TP F UF
-FIP→UFLP {P} TP fip F UF = record { limit = FIP.limit fip (subst (λ k → k ⊆ CS TP) (sym *iso) CF⊆CS) ufl01 
+FIP→UFLP {P} TP fip F UF = record { limit = FIP.limit fip (subst (λ k → k ⊆ CS TP) (sym *iso) CF⊆CS) ufl01
    ; P∋limit = ufl10 ; is-limit = ufl00 } where
      F∋P : odef (filter F) (& P)
      F∋P with ultra-filter.ultra UF {od∅} (λ z az → ⊥-elim (¬x<0 (subst (λ k → odef k z) *iso az)) )  (λ z az → proj1 (subst (λ k → odef k z) *iso az ) )
      ... | case1 fp = ⊥-elim ( ultra-filter.proper UF fp )
      ... | case2 flp = subst (λ k → odef (filter F) k) (cong (&) (==→o≡ fl20))  flp where
          fl20 :  (P \ Ord o∅) =h=  P
-         fl20 = record { eq→ = λ {x} lt → proj1 lt ; eq← = λ {x} lt → ⟪ lt , (λ lt → ⊥-elim (¬x<0 lt) )  ⟫  } 
+         fl20 = record { eq→ = λ {x} lt → proj1 lt ; eq← = λ {x} lt → ⟪ lt , (λ lt → ⊥-elim (¬x<0 lt) )  ⟫  }
      0<P : o∅ o< & P
      0<P with trio< o∅ (& P)
      ... | tri< a ¬b ¬c = a
@@ -232,7 +232,7 @@
      CF : HOD
      CF = Replace (filter F) (λ x → Cl TP x  )
      CF⊆CS : CF ⊆ CS TP
-     CF⊆CS {x} record { z = z ; az = az ; x=ψz = x=ψz } = subst (λ k → odef (CS TP) k) (sym x=ψz) (CS∋Cl TP (* z)) 
+     CF⊆CS {x} record { z = z ; az = az ; x=ψz = x=ψz } = subst (λ k → odef (CS TP) k) (sym x=ψz) (CS∋Cl TP (* z))
      --
      -- it is set of closed set and has FIP ( F is proper )
      --
@@ -246,19 +246,19 @@
         ufl09 : * z ⊆ P
         ufl09 {y} zy = f⊆L F az _ zy
         ufl07 : odef (filter F) x
-        ufl07 = subst (λ k → odef (filter F) k) &iso ( filter1 F (subst (λ k → odef (Power P) k) (trans (sym x=ψz) (sym &iso))  ufl08  ) 
-            (subst (λ k → odef (filter F) k) (sym &iso) az) 
+        ufl07 = subst (λ k → odef (filter F) k) &iso ( filter1 F (subst (λ k → odef (Power P) k) (trans (sym x=ψz) (sym &iso))  ufl08  )
+            (subst (λ k → odef (filter F) k) (sym &iso) az)
             (subst (λ k → * z ⊆ k ) (trans (sym *iso) (sym (cong (*) x=ψz)) ) (x⊆Clx TP {* z} ufl09 ) ))
      F∋sb  (g∩ {x} {y} sx sy) = filter2 F (subst (λ k → odef (filter F) k) (sym &iso) (F∋sb sx))
-        (subst (λ k → odef (filter F) k) (sym &iso) (F∋sb sy)) 
-            (λ z xz → fx→px (F∋sb sx) _ (subst (λ k → odef k _) (sym *iso) (proj1 (subst (λ k → odef k z) *iso xz) )))   
+        (subst (λ k → odef (filter F) k) (sym &iso) (F∋sb sy))
+            (λ z xz → fx→px (F∋sb sx) _ (subst (λ k → odef k _) (sym *iso) (proj1 (subst (λ k → odef k z) *iso xz) )))
      ufl01 : {x : Ordinal} → Subbase (* (& CF)) x → o∅ o< x
      ufl01 {x} sb = ufl04  where
-        ufl04 : o∅ o< x 
-        ufl04 with trio< o∅ x 
+        ufl04 : o∅ o< x
+        ufl04 with trio< o∅ x
         ... | tri< a ¬b ¬c = a
         ... | tri≈ ¬a b ¬c = ⊥-elim ( ultra-filter.proper UF (subst (λ k → odef (filter F) k) (
-           begin 
+           begin
            x  ≡⟨ sym b ⟩
            o∅ ≡⟨ sym ord-od∅ ⟩
            & od∅  ∎ ) (F∋sb (subst (λ k → Subbase k x) *iso sb )) ))  where open ≡-Reasoning
@@ -266,14 +266,14 @@
      ufl10 : odef P (FIP.limit fip (subst (λ k → k ⊆ CS TP) (sym *iso) CF⊆CS) ufl01)
      ufl10 = FIP.L∋limit fip (subst (λ k → k ⊆ CS TP) (sym *iso) CF⊆CS) ufl01 {& P} ufl11  where
          ufl11 : odef (* (& CF)) (& P)
-         ufl11 = subst (λ k → odef k (& P)) (sym *iso) record { z = _ ; az  = F∋P ; x=ψz = sym (cong (&) (trans (cong (Cl TP) *iso) (ClL TP)))   }  
+         ufl11 = subst (λ k → odef k (& P)) (sym *iso) record { z = _ ; az  = F∋P ; x=ψz = sym (cong (&) (trans (cong (Cl TP) *iso) (ClL TP)))   }
      --
      -- so we have a limit
      --
      limit : Ordinal
-     limit = FIP.limit fip (subst (λ k → k ⊆ CS TP) (sym *iso) CF⊆CS) ufl01  
+     limit = FIP.limit fip (subst (λ k → k ⊆ CS TP) (sym *iso) CF⊆CS) ufl01
      ufl02 : {y : Ordinal } → odef (* (& CF)) y → odef (* y) limit
-     ufl02 = FIP.is-limit fip (subst (λ k → k ⊆ CS TP) (sym *iso) CF⊆CS) ufl01  
+     ufl02 = FIP.is-limit fip (subst (λ k → k ⊆ CS TP) (sym *iso) CF⊆CS) ufl01
      --
      -- Neigbor of limit ⊆ Filter
      --
@@ -281,17 +281,18 @@
      -- in (nei : Neighbor TP limit v) , there is an open Set u which contains the limit
      -- F contains u or P \ u because F is ultra
      --   if F ∋ u, then F ∋ v from u ⊆ v which is a propetery of Neighbor
-     --   if F ∋ P \ u, it is a closed set (Cl (P \ u) ≡ P \ u) and it does not contains the limit 
+     --   if F ∋ P \ u, it is a closed set (Cl (P \ u) ≡ P \ u) and it does not contains the limit
      --      this contradicts ufl02
      pp :  {v : Ordinal} → (nei : Neighbor TP limit v ) → Power P ∋ (* (Neighbor.u nei))
-     pp {v} record { u = u ; ou = ou ; ux = ux ; v⊆P = v⊆P ; u⊆v = u⊆v } z pz 
-        = os⊆L TP (subst (λ k → odef (OS TP) k) (sym &iso) ou ) (subst (λ k → odef k z) *iso pz ) 
-     ufl00 :  {v : Ordinal} → Neighbor TP limit v → * v ⊆ filter F 
-     ufl00 {v} nei {x} vx with ultra-filter.ultra UF (pp nei ) (NEG P (pp nei ))
-     ... | case1 fu = ? where -- Neighbor.u⊆v nei ? where
-         -- subst (λ k → odef (filter F) k) &iso ( filter1 F ? ? ? ) where
-         px : Power P ∋ * x
-         px z xz = Neighbor.v⊆P nei ?
+     pp {v} record { u = u ; ou = ou ; ux = ux ; v⊆P = v⊆P ; u⊆v = u⊆v } z pz
+        = os⊆L TP (subst (λ k → odef (OS TP) k) (sym &iso) ou ) (subst (λ k → odef k z) *iso pz )
+     ufl00 :  {v : Ordinal} → Neighbor TP limit v → filter F ∋ * v
+     ufl00 {v} nei with ultra-filter.ultra UF (pp nei ) (NEG P (pp nei ))
+     ... | case1 fu = subst (λ k → odef (filter F) k) &iso
+       ( filter1 F (subst (λ k → odef (Power P) k ) (sym &iso) px)  fu (subst (λ k → u ⊆ k ) (sym *iso) (Neighbor.u⊆v nei))) where
+         u = * (Neighbor.u nei)
+         px : Power P ∋ * v
+         px z vz = Neighbor.v⊆P nei (subst (λ k → odef k z) *iso vz )
      ... | case2 nfu = ⊥-elim ( ¬P\u∋limit P\u∋limit ) where
          u = * (Neighbor.u nei)
          P\u : HOD
@@ -299,7 +300,7 @@
          P\u∋limit : odef P\u limit
          P\u∋limit = subst (λ k → odef k limit) *iso ( ufl02 (subst (λ k → odef k (& P\u)) (sym *iso) ufl03 )) where
              ufl04 : & P\u ≡ & (Cl TP (* (& P\u)))
-             ufl04 = cong (&) (sym (trans (cong (Cl TP) *iso) 
+             ufl04 = cong (&) (sym (trans (cong (Cl TP) *iso)
                 (CS∋x→Clx=x TP (P\OS=CS TP (subst (λ k → odef (OS TP) k) (sym &iso) (Neighbor.ou nei) )))))
              ufl03 : odef CF (& P\u )
              ufl03 = record { z = _ ; az = nfu ; x=ψz = ufl04 }
@@ -340,14 +341,14 @@
 
          Pf : odef (ZFP P Q) (& < * (UFLP.limit uflp) , * (UFLP.limit uflq) >)
          Pf = ?
-         pq⊆F : {p q : HOD} → Neighbor TP (& p) (UFLP.limit uflp) → Neighbor TP (& q) (UFLP.limit uflq) → ? ⊆ filter F 
+         pq⊆F : {p q : HOD} → Neighbor TP (& p) (UFLP.limit uflp) → Neighbor TP (& q) (UFLP.limit uflq) → ? ⊆ filter F
          pq⊆F = ?
-         isL : {v : Ordinal} → Neighbor (ProductTopology TP TQ) (& < * (UFLP.limit uflp) , * (UFLP.limit uflq) >) v → * v ⊆ filter F 
-         isL {v} npq {x} fx = ? where 
+         isL : {v : Ordinal} → Neighbor (ProductTopology TP TQ) (& < * (UFLP.limit uflp) , * (UFLP.limit uflq) >) v → filter F ∋ * v
+         isL {v} npq = ? where
              bpq : Base (ZFP P Q) (pbase TP TQ) (Neighbor.u npq) (& < * (UFLP.limit uflp) , * (UFLP.limit uflq) >)
              bpq = Neighbor.ou npq (Neighbor.ux npq)
              pqb : Subbase (pbase TP TQ) (Base.b bpq )
-             pqb = Base.sb bpq 
+             pqb = Base.sb bpq
              pqb⊆opq : * (Base.b bpq) ⊆ * ( Neighbor.u npq )
              pqb⊆opq = Base.b⊆u bpq
              base⊆F : {b : Ordinal } →  Subbase (pbase TP TQ) b → * b ⊆  * (Neighbor.u npq) → * b ⊆ filter F
@@ -356,24 +357,24 @@
                  --    x is an element of BaseP, which is a subset of Neighbor npq
                  --    x is also an elment of Proj1 F because Proj1 F has UFLP (uflp)
                  --    BaseP ∩ F is not empty
-                 --    (Base P ∩ F) ⊆ F , (Base P ) ⊆ F , 
+                 --    (Base P ∩ F) ⊆ F , (Base P ) ⊆ F ,
                  il1 : odef (Power P) z ∧ ZProj1 (filter F) z
-                 il1 = UFLP.is-limit uflp ? bz 
+                 il1 = ? -- UFLP.is-limit uflp ? bz
                  nei1 : HOD
                  nei1 = Proj1 (* (Neighbor.u npq)) (Power P) (Power Q)
                  plimit : Ordinal
-                 plimit = UFLP.limit uflp 
+                 plimit = UFLP.limit uflp
                  nproper : {b : Ordinal } →  * b ⊆ nei1 → o∅ o< b
                  nproper = ?
                  b∋z : odef nei1 z
                  b∋z = ?
                  bp : BaseP {P} TP Q z
                  bp = record { p = ? ; op = ? ; prod = ? }
-                 neip : {p : Ordinal } → ( bp : BaseP TP Q p ) → * p ⊆ filter F 
+                 neip : {p : Ordinal } → ( bp : BaseP TP Q p ) → * p ⊆ filter F
                  neip = ?
                  il2 : * z ⊆ ZFP (Power P) (Power Q)
                  il2 = ?
-                 il3 : filter F ∋ ? 
+                 il3 : filter F ∋ ?
                  il3 = ?
                  fz : odef (filter F) z
                  fz = subst (λ k → odef (filter F) k) &iso (filter1 F ? ? ?)