Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 96:f239ffc27fd0
Power Set and L
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 08 Jun 2019 22:17:40 +0900 |
parents | f3da2c87cee0 |
children | f2b579106770 |
files | ordinal-definable.agda |
diffstat | 1 files changed, 36 insertions(+), 8 deletions(-) [+] |
line wrap: on
line diff
--- a/ordinal-definable.agda Sat Jun 08 17:33:09 2019 +0900 +++ b/ordinal-definable.agda Sat Jun 08 22:17:40 2019 +0900 @@ -45,6 +45,7 @@ od∅ : {n : Level} → OD {n} od∅ {n} = record { def = λ _ → Lift n ⊥ } +-- OD can be iso to a subset of Ordinal postulate od→ord : {n : Level} → OD {n} → Ordinal {n} ord→od : {n : Level} → Ordinal {n} → OD {n} @@ -247,9 +248,36 @@ -- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) -- postulate f-extensionality : { n : Level} → Relation.Binary.PropositionalEquality.Extensionality (suc n) (suc (suc n)) +-- Power Set of X ( or constructible by λ y → def X (od→ord y ) Def : {n : Level} → OD {suc n} → OD {suc n} -Def {n} X = record { def = λ y → ∀ (x : Ordinal {suc n} ) → def X x → def (ord→od y) x } +Def {n} A = record { def = λ t → ∀ (x : Ordinal {suc n} ) → def (ord→od t) x → def A x } + +-- Constructible Set on α +L : {n : Level} → Ordinal {suc n} → OD {suc n} +L {n} record { lv = Zero ; ord = (Φ .0) } = od∅ +L {n} record { lv = lx ; ord = (OSuc lv ox) } = Def ( L ( record { lv = lx ; ord = ox } )) +L {n} record { lv = (Suc lx) ; ord = (Φ (Suc lx)) } = -- Union ( L α ) + record { def = λ y → osuc y o< (od→ord (L {n} (record { lv = lx ; ord = Φ lx }) )) } + +csuc : {n : Level} → OD {suc n} → OD {suc n} +csuc x = ord→od ( osuc ( od→ord x )) +-- L∋ord : {n : Level} → (x : Ordinal {suc n} ) → L (osuc x) ∋ ord→od x +-- L∋ord {n} record { lv = Zero ; ord = (Φ .0) } = {!!} +-- L∋ord {n} record { lv = (Suc lv₁) ; ord = (Φ .(Suc lv₁)) } = {!!} +-- L∋ord {n} record { lv = lv ; ord = (OSuc .(lv) ord₁) } = {!!} + +-- X ⊆ OD → (P X ∩ OD ) ⊆ L (supP X) ∈ OD + +ord-of : {n : Level} → (A : OD {suc n} ) → Ordinal {suc n} → Ordinal {suc n} +ord-of {n} A x with def A x +... | t = x + +supP : {n : Level} → (A : OD {suc n} ) → Ordinal {suc n} +supP A = sup-o ( ord-of A ) + +L→P : {n : Level} → (A : OD {suc n} ) → L (supP A) ∋ Def A +L→P {n} A = {!!} OD→ZF : {n : Level} → ZF {suc (suc n)} {suc n} OD→ZF {n} = record { @@ -275,18 +303,18 @@ Union U = record { def = λ y → osuc y o< (od→ord U) } -- power : ∀ X ∃ A ∀ t ( t ∈ A ↔ ( ∀ {x} → t ∋ x → X ∋ x ) Power : OD {suc n} → OD {suc n} - Power X = record { def = λ y → ∀ (x : Ordinal {suc n} ) → def (ord→od y) x → def X x } + Power A = record { def = λ t → ∀ (x : Ordinal {suc n} ) → def (ord→od t) x → def A x } ZFSet = OD {suc n} _∈_ : ( A B : ZFSet ) → Set (suc n) A ∈ B = B ∋ A _⊆_ : ( A B : ZFSet ) → ∀{ x : ZFSet } → Set (suc n) _⊆_ A B {x} = A ∋ x → B ∋ x - _∩_ : ( A B : ZFSet ) → ZFSet - A ∩ B = Select (A , B) ( λ x → ( A ∋ x ) ∧ (B ∋ x) ) - _∪_ : ( A B : ZFSet ) → ZFSet - A ∪ B = Select (A , B) ( λ x → (A ∋ x) ∨ ( B ∋ x ) ) + -- _∩_ : ( A B : ZFSet ) → ZFSet + -- A ∩ B = Select (A , B) ( λ x → ( A ∋ x ) ∧ (B ∋ x) ) + -- _∪_ : ( A B : ZFSet ) → ZFSet + -- A ∪ B = Select (A , B) ( λ x → (A ∋ x) ∨ ( B ∋ x ) ) infixr 200 _∈_ - infixr 230 _∩_ _∪_ + -- infixr 230 _∩_ _∪_ infixr 220 _⊆_ isZF : IsZF (OD {suc n}) _∋_ _==_ od∅ _,_ Union Power Select Replace (ord→od ( record { lv = Suc Zero ; ord = Φ 1} )) isZF = record { @@ -315,7 +343,7 @@ empty x () --- Power X = record { def = λ t → ∀ (x : Ordinal {suc n} ) → def (ord→od t) x → def X x } power→ : (A t : OD) → Power A ∋ t → {x : OD} → t ∋ x → A ∋ x - power→ A t P∋t {x} t∋x = {!!} + power→ A t P∋t {x} t∋x = P∋t (od→ord x) (subst (λ k → def k (od→ord x)) (sym oiso) t∋x ) power← : (A t : OD) → ({x : OD} → (t ∋ x → A ∋ x)) → Power A ∋ t power← A t t→A z _ = {!!} union-u : (X z : OD {suc n}) → Union X ∋ z → OD {suc n}