changeset 523:f351c183e712

all-climb-case
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Mon, 18 Apr 2022 00:11:24 +0900
parents 8e36b5c35777
children c02c82656063
files src/zorn.agda
diffstat 1 files changed, 71 insertions(+), 83 deletions(-) [+]
line wrap: on
line diff
--- a/src/zorn.agda	Sun Apr 17 19:58:58 2022 +0900
+++ b/src/zorn.agda	Mon Apr 18 00:11:24 2022 +0900
@@ -141,11 +141,11 @@
       iy : IChain A y
       ic : ic-connect x iy 
 
-IChainSet : {A : HOD} → Element A → HOD
-IChainSet {A} ax = record { od = record { def = λ y → odef A y ∧ IChained A (& (elm ax)) y }
+IChainSet : (A : HOD) {x : Ordinal} → odef A  x → HOD
+IChainSet A {x} ax = record { od = record { def = λ y → odef A y ∧ IChained A x y }
     ; odmax = & A ; <odmax = λ {y} lt → subst (λ k → k o< & A) &iso (c<→o< (subst (λ k → odef A k) (sym &iso) (proj1 lt))) } 
 
-IChainSet⊆A :  {A : HOD} → (x : Element A ) → IChainSet x ⊆ A
+IChainSet⊆A :  {A : HOD} → {x : Ordinal } → (ax : odef A x ) → IChainSet A ax ⊆ A
 IChainSet⊆A {A} x = record { incl = λ {oy} y → proj1 y }
 
 ¬IChained-refl : (A : HOD) {x : Ordinal} → IsPartialOrderSet A → ¬ IChained A x x
@@ -159,7 +159,7 @@
 record OSup> (A : HOD) {x : Ordinal} (ax : A ∋ * x) : Set n where
    field
       y : Ordinal
-      icy : odef (IChainSet {A} (me ax)) y 
+      icy : odef (IChainSet A ax ) y 
       y>x : x o< y
 
 record IChainSup> (A : HOD) {x : Ordinal} (ax : A ∋ * x) : Set n where
@@ -170,13 +170,13 @@
 
 -- finite IChain
 
-ic→A∋y : (A : HOD) {x y : Ordinal}  (ax : A ∋ * x) → odef (IChainSet {A} (me ax)) y → A ∋ * y
+ic→A∋y : (A : HOD) {x y : Ordinal}  (ax : A ∋ * x) → odef (IChainSet A ax) y → A ∋ * y
 ic→A∋y A {x} {y} ax ⟪ ay , _ ⟫ = subst (λ k → odef A k) (sym &iso) ay
 
 record InFiniteIChain (A : HOD) (max : Ordinal) {x : Ordinal}  (ax : A ∋ * x) : Set n where
    field
-      chain<x : (y : Ordinal ) → odef (IChainSet {A} (me ax)) y →  y o< max
-      c-infinite : (y : Ordinal ) → (cy : odef (IChainSet {A} (me ax)) y  )
+      chain<x : (y : Ordinal ) → odef (IChainSet A ax) y →  y o< max
+      c-infinite : (y : Ordinal ) → (cy : odef (IChainSet A ax) y  )
           → IChainSup> A (ic→A∋y A ax cy)
 
 open import Data.Nat hiding (_<_) 
@@ -206,17 +206,17 @@
 cton A s next y = cton0 A s next (is-elm y)
 
 cinext :  (A : HOD) {x max : Ordinal } → (ax : A ∋ * x ) → (ifc : InFiniteIChain A max ax ) → Ordinal  →  Ordinal
-cinext A ax ifc y with ODC.∋-p O (IChainSet (me ax)) (* y)
-... | yes ics-y = IChainSup>.y ( InFiniteIChain.c-infinite ifc y (subst (λ k → odef (IChainSet (me ax)) k) &iso ics-y ))
+cinext A ax ifc y with ODC.∋-p O (IChainSet A ax) (* y)
+... | yes ics-y = IChainSup>.y ( InFiniteIChain.c-infinite ifc y (subst (λ k → odef (IChainSet A ax) k) &iso ics-y ))
 ... | no _ = o∅
 
 InFCSet : (A : HOD) → {x max : Ordinal}  (ax : A ∋ * x)
      → (ifc : InFiniteIChain A max ax ) → HOD
-InFCSet A {x} ax ifc =  ChainClosure (IChainSet {A} (me ax)) x (cinext A ax ifc ) 
+InFCSet A {x} ax ifc =  ChainClosure (IChainSet A ax) x (cinext A ax ifc ) 
 
 InFCSet⊆A : (A : HOD) → {x max : Ordinal}  (ax : A ∋ * x) →  (ifc : InFiniteIChain A max ax ) → InFCSet A ax ifc ⊆ A
-InFCSet⊆A A {x} ax ifc = record { incl = λ {y} lt → incl (IChainSet⊆A (me ax)) (
-     ct∈A (IChainSet {A} (me ax)) x (cinext A ax ifc) lt ) }
+InFCSet⊆A A {x} ax ifc = record { incl = λ {y} lt → incl (IChainSet⊆A ax) (
+     ct∈A (IChainSet A ax) x (cinext A ax ifc) lt ) }
 
 ChainClosure-is-total : (A : HOD) → {x max : Ordinal}  (ax : A ∋ * x)
      → IsPartialOrderSet A 
@@ -226,10 +226,10 @@
    ; trans = λ {x} {y} {z} → IsStrictPartialOrder.trans IPO {x} {y} {z}  ; compare = cmp } where
     IPO : IsPartialOrderSet (InFCSet A ax ifc )
     IPO = ⊆-IsPartialOrderSet record { incl = λ {y} lt → incl (InFCSet⊆A A {x} ax ifc) lt} PO
-    B = IChainSet {A} (me ax)
+    B = IChainSet A ax
     cnext = cinext A ax ifc
     ct02 : {oy : Ordinal} → (y : Chain B x cnext oy ) → A ∋ * oy 
-    ct02 y = incl (IChainSet⊆A {A} (me ax)) (subst (λ k → odef (IChainSet (me ax)) k) (sym &iso) (ct∈A B x cnext y) ) 
+    ct02 y = incl (IChainSet⊆A {A} ax) (subst (λ k → odef (IChainSet A ax) k) (sym &iso) (ct∈A B x cnext y) ) 
     ct-inject : {ox oy : Ordinal} → (x1 : Chain B x cnext ox ) → (y : Chain B x cnext oy )
        → (cton0 B x cnext x1) ≡ (cton0 B x cnext y) → ox ≡ oy
     ct-inject {ox} {ox} (cfirst x) (cfirst x₁) refl = refl
@@ -243,21 +243,21 @@
     ct-monotonic {ox} {oy} x1 (csuc oy1 ay y _) (s≤s lt) with NP.<-cmp ( cton0 B x cnext x1 ) ( cton0 B x cnext y )
     ... | tri< a ¬b ¬c = ct07 where
         ct07 :  * ox < * (cnext oy1)
-        ct07 with ODC.∋-p O (IChainSet {A} (me ax)) (* oy1)
-        ... | no not  = ⊥-elim ( not (subst (λ k → odef (IChainSet {A} (me ax)) k ) (sym &iso) ay ) )
+        ct07 with ODC.∋-p O (IChainSet A ax) (* oy1)
+        ... | no not  = ⊥-elim ( not (subst (λ k → odef (IChainSet A ax) k ) (sym &iso) ay ) )
         ... | yes ay1 = IsStrictPartialOrder.trans PO {me (ct02 x1) } {me (ct02 y)} {me ct031 } (ct-monotonic x1 y a ) ct011 where
-           ct031 :  A ∋ * (IChainSup>.y (InFiniteIChain.c-infinite ifc oy1 (subst (λ k → odef (IChainSet {A} (me ax)) k) &iso ay1 ) )) 
+           ct031 :  A ∋ * (IChainSup>.y (InFiniteIChain.c-infinite ifc oy1 (subst (λ k → odef (IChainSet A ax) k) &iso ay1 ) )) 
            ct031 = subst (λ k → odef A k ) (sym &iso) (
-              IChainSup>.A∋y (InFiniteIChain.c-infinite ifc oy1 (subst (λ k → odef (IChainSet {A} (me ax)) k) &iso ay1 )) )
-           ct011 :  * oy1 < * ( IChainSup>.y (InFiniteIChain.c-infinite ifc oy1 (subst (λ k → odef (IChainSet {A} (me ax)) k) &iso ay1 )) )
-           ct011 = IChainSup>.y>x (InFiniteIChain.c-infinite ifc oy1 (subst (λ k → odef (IChainSet {A} (me ax)) k) &iso ay1 )) 
+              IChainSup>.A∋y (InFiniteIChain.c-infinite ifc oy1 (subst (λ k → odef (IChainSet A ax) k) &iso ay1 )) )
+           ct011 :  * oy1 < * ( IChainSup>.y (InFiniteIChain.c-infinite ifc oy1 (subst (λ k → odef (IChainSet A ax) k) &iso ay1 )) )
+           ct011 = IChainSup>.y>x (InFiniteIChain.c-infinite ifc oy1 (subst (λ k → odef (IChainSet A ax) k) &iso ay1 )) 
     ... | tri≈ ¬a b ¬c = ct11 where
            ct11 : * ox < * (cnext oy1)
-           ct11 with ODC.∋-p O (IChainSet {A} (me ax)) (* oy1)
-           ... | no not  = ⊥-elim ( not (subst (λ k → odef (IChainSet {A} (me ax)) k ) (sym &iso) ay ) )
+           ct11 with ODC.∋-p O (IChainSet A ax) (* oy1)
+           ... | no not  = ⊥-elim ( not (subst (λ k → odef (IChainSet A ax) k ) (sym &iso) ay ) )
            ... | yes ay1 = subst (λ k → * k < _) (sym (ct-inject _ _ b)) ct011  where
-              ct011 :  * oy1 < * ( IChainSup>.y (InFiniteIChain.c-infinite ifc oy1 (subst (λ k → odef (IChainSet {A} (me ax)) k) &iso ay1 )) )
-              ct011 = IChainSup>.y>x (InFiniteIChain.c-infinite ifc oy1 (subst (λ k → odef (IChainSet {A} (me ax)) k) &iso ay1 )) 
+              ct011 :  * oy1 < * ( IChainSup>.y (InFiniteIChain.c-infinite ifc oy1 (subst (λ k → odef (IChainSet A ax) k) &iso ay1 )) )
+              ct011 = IChainSup>.y>x (InFiniteIChain.c-infinite ifc oy1 (subst (λ k → odef (IChainSet A ax) k) &iso ay1 )) 
     ... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> lt c ) 
     ct12 : {y z : Element (ChainClosure B x cnext) } → elm y ≡ elm z → elm y < elm z → ⊥ 
     ct12 {y} {z} y=z y<z = IsStrictPartialOrder.irrefl IPO {y} {z} y=z y<z
@@ -288,7 +288,7 @@
       
 record IsFC (A : HOD) {x : Ordinal}  (ax : A ∋ * x) (y : Ordinal) : Set n where
    field
-      icy : odef (IChainSet {A} (me ax)) y  
+      icy : odef (IChainSet A ax) y  
       c-finite : ¬ IChainSup> A (subst (λ k → odef A k ) (sym &iso) (proj1 icy) )
       
 record Maximal ( A : HOD )  : Set (Level.suc n) where
@@ -307,69 +307,58 @@
 Zorn-lemma-3case : { A : HOD } 
     → o∅ o< & A 
     → IsPartialOrderSet A 
-    → (x : Element A) → OSup> A (d→∋ A (is-elm x)) ∨ Maximal A ∨ InFiniteIChain A (& (elm x))  (d→∋ A (is-elm x))
-Zorn-lemma-3case {A}  0<A PO x = zc2 where
+    → (x : Ordinal ) → (ax : odef A x)  → OSup> A (d→∋ A ax) ∨ Maximal A ∨ InFiniteIChain A x  (d→∋ A ax)
+Zorn-lemma-3case {A}  0<A PO x ax = zc2 where
     Gtx : HOD
-    Gtx = record { od = record { def = λ y → odef ( IChainSet x ) y ∧  ( & (elm x) o< y ) } ; odmax = & A
+    Gtx = record { od = record { def = λ y → odef ( IChainSet A ax ) y ∧  ( x o< y ) } ; odmax = & A
         ; <odmax = λ lt → subst (λ k → k o< & A) &iso (c<→o< (d→∋  A (proj1 (proj1 lt))))  }
     HG : HOD
-    HG = record { od = record { def = λ y → odef A y ∧ IsFC A (d→∋ A (is-elm x) ) y } ; odmax = & A
+    HG = record { od = record { def = λ y → odef A y ∧ IsFC A (d→∋ A ax ) y } ; odmax = & A
         ; <odmax = λ lt → subst (λ k → k o< & A) &iso (c<→o< (d→∋  A  (proj1 lt) ))  }
-    zc2 :  OSup> A (d→∋ A (is-elm x))  ∨ Maximal A ∨ InFiniteIChain A (& (elm x))  (d→∋ A (is-elm x))
+    zc2 :  OSup> A (d→∋ A ax)  ∨ Maximal A ∨ InFiniteIChain A x  (d→∋ A ax )
     zc2 with  is-o∅ (& Gtx)
     ... | no not = case1 record { y = & y ; icy = zc4 ; y>x = proj2 zc3 } where
         y : HOD
         y =  ODC.minimal O Gtx  (λ eq → not (=od∅→≡o∅ eq))
-        zc3 :  odef ( IChainSet x ) (& y) ∧  ( & (elm x) o< (& y ))
+        zc3 :  odef ( IChainSet A ax ) (& y) ∧  ( x o< (& y ))
         zc3  = ODC.x∋minimal O Gtx  (λ eq → not (=od∅→≡o∅ eq))
-        zc4 : odef (IChainSet (me (subst (OD.def (od A)) (sym &iso) (is-elm x)))) (& y)
-        zc4 = ⟪ proj1 (proj1 zc3) , subst (λ k → IChained A (& k) (& y) ) (sym *iso) (proj2 (proj1 zc3)) ⟫ 
+        zc4 : odef (IChainSet A (subst (OD.def (od A)) (sym &iso) ax)) (& y)
+        zc4 = ⟪ proj1 (proj1 zc3) , (subst (λ k → IChained A k (& y)) (sym &iso) (proj2 (proj1 zc3))) ⟫ 
     ... | yes nogt with is-o∅ (& HG)
     ... | no  finite-chain = case2 (case1 record { maximal = y ; A∋maximal = proj1 zc3 ; ¬maximal<x = zc4 } ) where
         y : HOD
         y =  ODC.minimal O HG (λ eq → finite-chain (=od∅→≡o∅ eq))
-        zc3 :  odef A (& y) ∧ IsFC A (d→∋ A (is-elm x) ) (& y)
+        zc3 :  odef A (& y) ∧ IsFC A (d→∋ A ax ) (& y)
         zc3  = ODC.x∋minimal O HG  (λ eq → finite-chain (=od∅→≡o∅ eq))
-        zc5 : odef (IChainSet {A} (me (d→∋ A (is-elm x) ))) (& y)
-        zc5 = IsFC.icy (proj2 zc3)
         zc4 : {z : HOD} → A ∋ z → ¬ (y < z)
-        zc4 {z} az y<z = IsFC.c-finite (proj2 zc3) record { y = & z ; A∋y =  az ; y>x = subst₂ (λ j k → j < k ) (sym *iso) (sym *iso) y<z } where
-            zc8 : ic-connect (& (* (& (elm x)))) (IChained.iy (proj2 zc5)) 
-            zc8 = IChained.ic (proj2 zc5)
-            zc7 : elm x < y
-            zc7 = subst₂ (λ j k → j < k ) *iso *iso ( ic→< {A} PO (& (elm x)) (is-elm x) (IChained.iy (proj2 zc5))
-                (subst (λ k → ic-connect (& k) (IChained.iy (proj2 zc5)) ) (me-elm-refl A x) (IChained.ic (proj2 zc5)) )  )
-            zc6 : elm x < z
-            zc6 = IsStrictPartialOrder.trans PO {x} {me (proj1 zc3)} {me az} zc7 y<z
-    ... | yes inifite = case2 (case2 record {    c-infinite = zc9 ; chain<x = zc10} ) where
+        zc4 {z} az y<z = IsFC.c-finite (proj2 zc3) record { y = & z ; A∋y =  az ; y>x = subst₂ (λ j k → j < k ) (sym *iso) (sym *iso) y<z } 
+    ... | yes inifite = case2 (case2 record {    c-infinite = zc91 ; chain<x = zc10 } ) where
         B : HOD
-        B = IChainSet {A} (me (subst (OD.def (od A)) (sym &iso) (is-elm x)))
+        B = IChainSet A ax -- (me (subst (OD.def (od A)) (sym &iso) (is-elm x)))
+        B1 : HOD
+        B1 = IChainSet A (subst (OD.def (od A)) (sym &iso) ax)
         Nx : (y : Ordinal) → odef A y → HOD
         Nx y ay = record { od = record { def = λ x → odef A x ∧ ( * y < * x ) } ; odmax = & A
               ; <odmax = λ lt → subst (λ k → k o< & A) &iso (c<→o< (d→∋  A (proj1 lt)))  }
-        zc10 : (oy : Ordinal) → odef (IChainSet {A} (me (subst (OD.def (od A)) (sym &iso) (is-elm x)))) oy → oy o< & (elm x)
+        zc10 : (y : Ordinal) → odef (IChainSet A (subst (OD.def (od A)) (sym &iso) ax)) y → y o< x
         zc10 oy icsy = zc21 where
-             zc20 : (y : HOD) → (IChainSet x) ∋ y  → & (elm x) o< & y → ⊥
+             zc20 : (y : HOD) → (IChainSet A ax) ∋ y  → x o< & y → ⊥
              zc20 y icsy lt = ¬A∋x→A≡od∅ Gtx ⟪ icsy , lt ⟫ nogt
-             zc22 : IChainSet x ∋ * oy
-             zc22 = ⟪ subst (λ k → odef A k) (sym &iso) (proj1 icsy)
-                 , subst₂ (λ j k → IChained A j k) (cong (&) (me-elm-refl A x))  (sym &iso) (proj2 icsy)  ⟫
-             zc21 : oy o< & (elm x) 
-             zc21 with trio< oy (& (elm x) )
+             zc22 : IChainSet A ax ∋ * oy
+             zc22 = ⟪ subst (λ k → odef A k) (sym &iso) (proj1 icsy) , subst₂ (λ j k → IChained A j k ) &iso (sym &iso) (proj2 icsy) ⟫
+             zc21 : oy o< x
+             zc21 with trio< oy  x
              ... | tri< a ¬b ¬c = a
-             ... | tri≈ ¬a b ¬c = ⊥-elim (¬IChained-refl A PO (subst₂ (λ j k → IChained A j k ) zc23 b (proj2 icsy)) ) where
-                 zc23 : & (* (& (elm x))) ≡ & (elm x)
-                 zc23 = cong (&) *iso 
-             ... | tri> ¬a ¬b c = ⊥-elim ( zc20 (* oy) zc22 (subst (λ k → & (elm x) o< k) (sym &iso) c ))
-        zc9 : (y : Ordinal) (cy : odef B y) →
-            IChainSup> A (ic→A∋y A (subst (OD.def (od A)) (sym &iso) (is-elm x)) cy)
-        zc9 y cy with is-o∅ (& (Nx y (proj1 cy) ))
+             ... | tri≈ ¬a b ¬c = ⊥-elim (¬IChained-refl A PO (subst₂ (λ j k → IChained A j k ) &iso b (proj2 icsy)) ) 
+             ... | tri> ¬a ¬b c = ⊥-elim ( zc20 (* oy) zc22 (subst (λ k → x o< k) (sym &iso) c ))
+        zc91 : (y : Ordinal) (cy : odef B1 y) → IChainSup> A (ic→A∋y A (subst (OD.def (od A)) (sym &iso) ax) cy)
+        zc91 y cy with is-o∅ (& (Nx y (proj1 cy) ))
         ... | yes no-next = ⊥-elim zc16 where
-             zc18 :  ¬ IChainSup> A (subst (odef A) (sym &iso) (proj1 (subst (λ k → odef (IChainSet (me (d→∋ A (is-elm x)))) k) (sym &iso) cy)))
+             zc18 :   ¬ IChainSup> A (subst (odef A) (sym &iso) (proj1 (subst (λ k → odef (IChainSet A (d→∋ A ax)) k) (sym &iso) cy)))
              zc18 ics = ¬A∋x→A≡od∅ (Nx y (proj1 cy) ) ⟪ subst (λ k → odef A k ) (sym &iso) (IChainSup>.A∋y ics)
                   ,  subst₂ (λ j k → j < k ) *iso (cong (*) (sym &iso))( IChainSup>.y>x ics) ⟫ no-next  
-             zc17 : IsFC A {& (elm x)} (d→∋ A (is-elm x)) (& (* y))
-             zc17 = record { icy = subst (λ k → odef (IChainSet (me (d→∋ A (is-elm x)))) k ) (sym &iso) cy ; c-finite = zc18 }
+             zc17 : IsFC A {x} (d→∋ A ax) (& (* y))
+             zc17 = record { icy = subst (λ k → odef (IChainSet A (d→∋ A ax)) k) (sym &iso) cy ; c-finite = zc18 }
              zc16 : ⊥
              zc16 = ¬A∋x→A≡od∅ HG ⟪ subst (λ k → odef A k ) (sym &iso) (proj1 cy ) , zc17 ⟫ inifite 
         ... | no not = record { y = & zc13 ; A∋y = proj1 zc12  ; y>x = proj2 zc12 }  where
@@ -378,28 +367,27 @@
              zc12 = ODC.x∋minimal O (Nx y (proj1 cy)) (λ eq → not (=od∅→≡o∅ eq ))
 
 all-climb-case : { A : HOD } → (0<A : o∅ o< & A) → IsPartialOrderSet A
-     → (( x : Element A) → OSup> A (d→∋ A (is-elm x) ))
+     → (( x : Ordinal ) → (ax : odef A (& (* x))) → OSup> A ax )
      → InFiniteIChain A (& A) (d→∋ A (ODC.x∋minimal O A (λ eq → ¬x<0 ( subst (λ k → o∅ o< k ) (=od∅→≡o∅ eq) 0<A )) ))
-all-climb-case {A} 0<A PO climb = record {    c-infinite = λ y cy → ac00 (& x) y (proj1 cy) (subst (λ k → IChained A k y  )
-         (cong (&) (me-elm-refl A (me ax))) (proj2 cy))
-    ; chain<x = ac01 }  where
+all-climb-case {A} 0<A PO climb = record {    c-infinite = ac00 ; chain<x = ac01 }  where
         x = ODC.minimal O A (λ eq → ¬x<0 (subst (_o<_ o∅) (=od∅→≡o∅ eq) 0<A))
         ax = ODC.x∋minimal O A (λ eq → ¬x<0 (subst (_o<_ o∅) (=od∅→≡o∅ eq) 0<A))
-        B = IChainSet {A} (me (d→∋ A ax))
-        ac01 : (y : Ordinal) → odef (IChainSet {A} (me (d→∋ A ax))) y → y o< & A
+        B = IChainSet A ax
+        ac01 : (y : Ordinal) → odef (IChainSet A (d→∋ A (ODC.x∋minimal O A (λ eq → ¬x<0 (subst (_o<_ o∅) (=od∅→≡o∅ eq) 0<A))))) y → y o< & A 
         ac01 y ⟪ ay , _ ⟫ = subst (λ k → k o< & A ) &iso (c<→o< (subst (λ k → odef A k ) (sym &iso) ay) )
-        ac00 : (x y : Ordinal) (ay : odef A y) (cy :  IChained A x y) → IChainSup> A (subst (λ k → odef A k ) (sym &iso) ay )
-        ac00 x y ay cy = record { y = z ; A∋y = az ; y>x = {!!} } where
+        ac00 : (y : Ordinal) (cy : odef (IChainSet A (d→∋ A ax)) y) → IChainSup> A (ic→A∋y A (d→∋ A ax) cy)
+        ac00 y cy = record { y = z ; A∋y = az ; y>x = y<z} where
+             ay : odef A (& (* y))
+             ay = subst (λ k → odef A k) (sym &iso) (proj1 cy)
              z : Ordinal
-             z = OSup>.y ( climb (me (subst (λ k → odef A k ) (sym &iso) ay) ) )
+             z = OSup>.y ( climb y  ay)
              az : odef A z
-             icy :  odef (IChainSet {A} (me (subst (λ k → odef A k ) {!!} ay))) z
-             icy  = OSup>.icy ( climb (me (subst (λ k → odef A k ) (sym &iso) ay) ) )
-             az = {!!}
-             -- incl (IChainSet⊆A {A} ? ) (subst (λ k → odef (IChainSet {A} ? ) k ) ? (OSup>.icy ( climb (me (subst (λ k → odef A k ) (sym &iso) ay) ) )))
-             - = OSup>.y ( climb (me (subst (λ k → odef A k ) (sym &iso) ay) ) )
-             -- iy0 : IChained A (& (* (& (ODC.minimal O A (λ eq → ¬x<0 (subst (_o<_ o∅) (=od∅→≡o∅ eq) 0<A)))))) ?
-             -- iy0 = iy 
+             az = subst (λ k → odef A k) &iso ( incl (IChainSet⊆A {A} ay ) (subst (λ k → odef (IChainSet A ay) k ) (sym &iso) (OSup>.icy ( climb y ay))))
+             icy :  odef (IChainSet A ay ) z
+             icy  = OSup>.icy ( climb y ay )
+             y<z  : * y < * z
+             y<z  = ic→< {A} PO y (subst (λ k → odef A k) &iso ay) (IChained.iy (proj2 icy))
+               (subst (λ k → ic-connect k (IChained.iy (proj2 icy))) &iso (IChained.ic (proj2 icy)))
 
 
 
@@ -421,7 +409,7 @@
      z02 : {x : Ordinal } → (ax : A ∋ * x ) → InFiniteIChain A x ax  → ⊥
      z02 {x} ax ic = zc5 ic where
               FC : HOD
-              FC = IChainSet {A} (me ax)
+              FC = IChainSet A ax
               zc6 :  InFiniteIChain A x ax  → ¬ SUP A FC 
               zc6 inf = {!!}
               FC-is-total : IsTotalOrderSet FC
@@ -452,12 +440,12 @@
           ... | case2 x = case2 x
           ... | case1 x = {!!}
           zc4 : ZChain A x ∨ Maximal A
-          zc4 with Zorn-lemma-3case 0<A PO (me ax)
-          ... | case1 y>x = zc1 y>x
+          zc4 with Zorn-lemma-3case 0<A PO x {!!}
+          ... | case1 y>x = zc1 {!!}
           ... | case2 (case1 x) = case2 x
           ... | case2 (case2 ex) = ⊥-elim (zc5 {!!} ) where
               FC : HOD
-              FC = IChainSet {A} (me ax)
+              FC = IChainSet A ax
               B : InFiniteIChain A x ax  → HOD
               B ifc =  InFCSet A ax ifc
               zc6 :  (ifc : InFiniteIChain A x ax ) → ¬ SUP A (B ifc)