Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 668:f40388701930
new data Chain
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 05 Jul 2022 05:10:27 +0900 |
parents | c6cd972b468c |
children | 7d227d624aad |
files | src/zorn.agda |
diffstat | 1 files changed, 22 insertions(+), 91 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Mon Jul 04 21:58:07 2022 +0900 +++ b/src/zorn.agda Tue Jul 05 05:10:27 2022 +0900 @@ -253,41 +253,16 @@ UnionCF : (A : HOD) (x : Ordinal) (chainf : (z : Ordinal ) → z o< x → HOD ) → HOD UnionCF A x chainf = record { od = record { def = λ z → odef A z ∧ UChain x chainf z } ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy } -data Chain (A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal} (ay : odef A y) : Ordinal → HOD → Set (Level.suc n) where - ch-init : (x : Ordinal) → x ≡ o∅ → Chain A f mf ay x record { od = record { def = λ z → FClosure A f y z } ; odmax = & A ; <odmax = λ {y} sy → ? } - ch-noax : {x : Ordinal } { chain : HOD } ( op : Oprev Ordinal osuc x ) (noax : ¬ odef A x ) (c : Chain A f mf ay (Oprev.oprev op) chain) → Chain A f mf ay x chain - ch-hasprev : {x : Ordinal } { chain : HOD } ( op : Oprev Ordinal osuc x ) (ax : odef A x ) - ( c : Chain A f mf ay (Oprev.oprev op) chain) ( h : HasPrev A chain ax f ) → Chain A f mf ay x chain - ch-is-sup : {x : Ordinal } { chain : HOD } ( op : Oprev Ordinal osuc x ) ( ax : odef A x ) - ( c : Chain A f mf ay (Oprev.oprev op) chain) ( nh : ¬ HasPrev A chain ax f ) ( sup : IsSup A chain ax ) → Chain A f mf ay x - record { od = record { def = λ z → odef A z ∧ (odef chain z ∨ (FClosure A f x z)) } ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy } - ch-skip : {x : Ordinal } { chain : HOD } ( op : Oprev Ordinal osuc x ) ( ax : odef A x ) - ( c : Chain A f mf ay (Oprev.oprev op) chain) ( nh : ¬ HasPrev A chain ax f ) ( nsup : ¬ IsSup A chain ax ) → Chain A f mf ay x chain - ch-noax-union : {x : Ordinal } { chain : HOD } ( nop : ¬ Oprev Ordinal osuc x ) ( noax : ¬ odef A x ) - → ( chainf : ( z : Ordinal ) → z o< x → HOD ) → ( lt : ( z : Ordinal ) → (z<x : z o< x ) → Chain A f mf ay z ( chainf z z<x )) - → Chain A f mf ay x (UnionCF A x chainf ) - ch-hasprev-union : {x : Ordinal } { chain : HOD } ( nop : ¬ Oprev Ordinal osuc x ) ( ax : odef A x ) - → ( chainf : ( z : Ordinal ) → z o< x → HOD ) → ( lt : ( z : Ordinal ) → (z<x : z o< x ) → Chain A f mf ay z ( chainf z z<x )) - → ( h : HasPrev A (UnionCF A x chainf) ax f ) - → Chain A f mf ay x (UnionCF A x chainf ) - ch-is-sup-union : {x : Ordinal } { chain : HOD } ( nop : ¬ Oprev Ordinal osuc x ) ( ax : odef A x ) - → ( chainf : ( z : Ordinal ) → z o< x → HOD ) → ( lt : ( z : Ordinal ) → (z<x : z o< x ) → Chain A f mf ay z ( chainf z z<x )) - → ( nh : ¬ HasPrev A (UnionCF A x chainf) ax f ) ( sup : IsSup A (UnionCF A x chainf) ax ) - → Chain A f mf ay x - record { od = record { def = λ z → odef A z ∧ (UChain x chainf z ∨ FClosure A f x z ) } - ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy } - ch-skip-union : {x : Ordinal } { chain : HOD } ( nop : ¬ Oprev Ordinal osuc x ) ( ax : odef A x ) - → ( chainf : ( z : Ordinal ) → z o< x → HOD ) → ( lt : ( z : Ordinal ) → (z<x : z o< x ) → Chain A f mf ay z ( chainf z z<x )) - → (nh : ¬ HasPrev A (UnionCF A x chainf) ax f ) (nsup : ¬ IsSup A (UnionCF A x chainf) ax ) - → Chain A f mf ay x (UnionCF A x chainf) - -ChainF : (A : HOD) → ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal} (ay : odef A y) → (chain : HOD ) → Chain A f mf ay (& A) chain → (x : Ordinal) → x o< & A → HOD -ChainF A f mf {y} ay chain Ch x x<a = {!!} +data Chain (A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal} (ay : odef A y) : Ordinal → Ordinal → Set n where + ch-init : (x z : Ordinal) → x ≡ o∅ → FClosure A f y z → Chain A f mf ay x z + ch-is-sup : {x z : Ordinal } ( ax : odef A x ) + → ( is-sup : (x1 w : Ordinal) → x1 o< x → Chain A f mf ay x1 w → w << x ) → ( fc : FClosure A f x z ) → Chain A f mf ay x z record ZChain ( A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {init : Ordinal} (ay : odef A init) ( z : Ordinal ) : Set (Level.suc n) where + chain : HOD + chain = record { od = record { def = λ x → Chain A f mf ay z x } ; odmax = (& A) ; <odmax = ? } field - chain : HOD - chain-uniq : Chain A f mf ay z chain + chainf : (w : Ordinal) → Chain A f mf ay z w chain⊆A : chain ⊆' A chain∋init : odef chain init initial : {y : Ordinal } → odef chain y → * init ≤ * y @@ -432,53 +407,6 @@ -- create all ZChains under o< x -- - sind : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) {y : Ordinal} (ay : odef A y) → (x : Ordinal) - → ((z : Ordinal) → z o< x → ZChain A f mf ay z ) → ZChain A f mf ay x - sind f mf {y} ay x prev with Oprev-p x - ... | yes op = sc4 where - open ZChain - px = Oprev.oprev op - px<x : px o< x - px<x = subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc - sc : ZChain A f mf ay px - sc = prev px px<x - sc4 : ZChain A f mf ay x - sc4 with ODC.∋-p O A (* x) - ... | no noax = record { chain = ? ; chain-uniq = ch-noax op (subst (λ k → ¬ odef A k) &iso noax) ( chain-uniq sc ) } - ... | yes ax with ODC.p∨¬p O ( HasPrev A (ZChain.chain sc ) ax f ) - ... | case1 pr = record { chain = chain sc ; chain-uniq = ch-hasprev op (subst (λ k → odef A k) &iso ax) ( chain-uniq sc ) - record { y = HasPrev.y pr ; ay = HasPrev.ay pr ; x=fy = sc6 } } where - sc6 : x ≡ f (HasPrev.y pr) - sc6 = subst (λ k → k ≡ f (HasPrev.y pr) ) &iso ( HasPrev.x=fy pr ) - ... | case2 ¬fy<x with ODC.p∨¬p O (IsSup A (ZChain.chain sc ) ax ) - ... | case1 is-sup = record { chain = schain ; chain-uniq = sc9 } where - schain : HOD - schain = record { od = record { def = λ z → odef A z ∧ ( odef (ZChain.chain sc ) z ∨ (FClosure A f x z)) } - ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy } - sc7 : ¬ HasPrev A (chain sc) (subst (λ k → odef A k) &iso ax) f - sc7 not = ¬fy<x record { y = HasPrev.y not ; ay = HasPrev.ay not ; x=fy = subst (λ k → k ≡ _) (sym &iso) (HasPrev.x=fy not ) } - sc9 : Chain A f mf ay x schain - sc9 = ch-is-sup op (subst (λ k → odef A k) &iso ax) (ZChain.chain-uniq sc) sc7 - record { x<sup = λ {z} lt → subst (λ k → (z ≡ k ) ∨ (z << k )) &iso (IsSup.x<sup is-sup lt) } - ... | case2 ¬x=sup = record { chain = chain sc ; chain-uniq = ch-skip op (subst (λ k → odef A k) &iso ax) (ZChain.chain-uniq sc) sc17 sc10 } where - sc17 : ¬ HasPrev A (chain sc) (subst (λ k → odef A k) &iso ax) f - sc17 not = ¬fy<x record { y = HasPrev.y not ; ay = HasPrev.ay not ; x=fy = subst (λ k → k ≡ _) (sym &iso) (HasPrev.x=fy not ) } - sc10 : ¬ IsSup A (chain sc) (subst (λ k → odef A k) &iso ax) - sc10 not = ¬x=sup ( record { x<sup = λ {z} lt → subst (λ k → (z ≡ k ) ∨ (z << k ) ) (sym &iso) ( IsSup.x<sup not lt ) } ) - ... | no ¬ox = sc4 where - chainf : (z : Ordinal) → z o< x → HOD - chainf z z<x = ZChain.chain ( prev z z<x ) - chainq : ( z : Ordinal ) → (z<x : z o< x ) → Chain A f mf ay z ( chainf z z<x ) - chainq z z<x = ZChain.chain-uniq ( prev z z<x ) - sc4 : ZChain A f mf ay x - sc4 with ODC.∋-p O A (* x) - ... | no noax = record { chain = UnionCF A x chainf ; chain-uniq = ch-noax-union ¬ox (subst (λ k → ¬ odef A k) &iso noax) ? ? } - ... | yes ax with ODC.p∨¬p O ( HasPrev A (UnionCF A x chainf) ax f ) - ... | case1 pr = record { chain = UnionCF A x chainf ; chain-uniq = ch-hasprev-union ¬ox (subst (λ k → odef A k) &iso ax) ? ? ? } - ... | case2 ¬fy<x with ODC.p∨¬p O (IsSup A (UnionCF A x chainf) ax ) - ... | case1 is-sup = ? - ... | case2 ¬x=sup = ? - ind : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) {y : Ordinal} (ay : odef A y) → (x : Ordinal) → ((z : Ordinal) → z o< x → ZChain A f mf ay z ) → ZChain A f mf ay x ind f mf {y} ay x prev with Oprev-p x @@ -631,8 +559,15 @@ ... | no ¬ox = zc5 where --- limit ordinal case -- chainf : (zc : ZChain1 A f mf ay x ) → (z : Ordinal) → z o< x → HOD -- chainf zc z z<x = ? + -- chainf : (z : Ordinal) → z o< x → HOD + -- chainf z z<x = ZChain.chain ( prev z z<x ) + -- chainq : ( z : Ordinal ) → (z<x : z o< x ) → Chain A f mf ay z ( chainf z z<x ) + -- chainq z z<x = ZChain.chain-uniq ( prev z z<x ) uzc : HOD uzc = UnionCF A x ? + -- c-mono : {z : Ordinal} {w : Ordinal} → z o≤ w → (w<x : w o< x ) → chainf z ? ⊆' chainf w w<x + -- c-mono {z} {w} z≤w w≤x {i} with trio< z x | trio< w x + -- ... | s | t = {!!} zc5 : ZChain A f mf ay x zc5 with ODC.∋-p O A (* x) ... | no noax = ? where -- ¬ A ∋ p, just skip @@ -644,25 +579,21 @@ -- chainf0 : (zc : ZChain1 A f mf ay x ) → (z : Ordinal) → z o< x → HOD -- chainf0 zc z z<x with ZChain1.chain-uniq zc0 -- ... | t = ? - supf : Ordinal → HOD - supf x = ? -- ZChain1.chain zc0 - Uz : HOD - Uz = UnionCF A x ? - u-next : {z : Ordinal} → odef Uz z → odef Uz (f z) - u-next {z} = {!!} + -- u-next : {z : Ordinal} → odef uzc z → odef Uz (f z) + -- u-next {z} = {!!} -- (case1 u) = case1 record { u = UChain.u u ; u<x = UChain.u<x u ; chain∋z = ZChain.f-next ( uzc u ) (UChain.chain∋z u) } -- u-next {z} (case2 u) = case2 ( fsuc _ u ) - u-initial : {z : Ordinal} → odef Uz z → * y ≤ * z - u-initial {z} = {!!} + -- u-initial : {z : Ordinal} → odef Uz z → * y ≤ * z + -- u-initial {z} = {!!} -- (case1 u) = ZChain.initial ( uzc u ) (UChain.chain∋z u) -- u-initial {z} (case2 u) = s≤fc _ f mf u - u-chain∋init : odef Uz y - u-chain∋init = {!!} -- case2 ( init ay ) + -- u-chain∋init : odef Uz y + -- u-chain∋init = {!!} -- case2 ( init ay ) supf0 : Ordinal → HOD supf0 z with trio< z x ... | tri< a ¬b ¬c = ? -- ZChain1.chain zc0 - ... | tri≈ ¬a b ¬c = Uz - ... | tri> ¬a ¬b c = Uz + ... | tri≈ ¬a b ¬c = ? -- Uz + ... | tri> ¬a ¬b c = ? -- Uz u-mono : {z : Ordinal} {w : Ordinal} → z o≤ w → w o≤ x → supf0 z ⊆' supf0 w u-mono {z} {w} z≤w w≤x {i} with trio< z x | trio< w x ... | s | t = {!!}