Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 791:f4450bc95699
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 03 Aug 2022 16:04:51 +0900 |
parents | 201b66da4e69 |
children | 150e1c7097ce |
files | src/zorn.agda |
diffstat | 1 files changed, 69 insertions(+), 44 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Wed Aug 03 02:50:13 2022 +0900 +++ b/src/zorn.agda Wed Aug 03 16:04:51 2022 +0900 @@ -284,7 +284,7 @@ data UChain ( A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal } (ay : odef A y ) (supf : Ordinal → Ordinal) (x : Ordinal) : (z : Ordinal) → Set n where ch-init : {z : Ordinal } (fc : FClosure A f y z) → UChain A f mf ay supf x z - ch-is-sup : (u : Ordinal) {z : Ordinal } (u<x : u o≤ x) ( is-sup : ChainP A f mf ay supf u ) + ch-is-sup : (u : Ordinal) {z : Ordinal } (u≤x : u o≤ x) ( is-sup : ChainP A f mf ay supf u ) ( fc : FClosure A f (supf u) z ) → UChain A f mf ay supf x z ∈∧P→o< : {A : HOD } {y : Ordinal} → {P : Set n} → odef A y ∧ P → y o< & A @@ -308,16 +308,16 @@ f-next : {a : Ordinal } → odef chain a → odef chain (f a) f-total : IsTotalOrderSet chain - sup : {x : Ordinal } → x o< z → SUP A (UnionCF A f mf ay supf x) - supf-is-sup : {x : Ordinal } → (x<z : x o< z) → supf x ≡ & (SUP.sup (sup x<z) ) + sup : {x : Ordinal } → x o≤ z → SUP A (UnionCF A f mf ay supf x) + supf-is-sup : {x : Ordinal } → (x<z : x o≤ z) → supf x ≡ & (SUP.sup (sup x<z) ) sup=u : {b : Ordinal} → (ab : odef A b) → b o< z → IsSup A (UnionCF A f mf ay supf (osuc b)) ab → supf b ≡ b csupf : {b : Ordinal } → b o≤ z → odef (UnionCF A f mf ay supf b) (supf b) supf-mono : {x y : Ordinal } → x o< y → supf x o≤ supf y fcy<sup : {u w : Ordinal } → u o< z → FClosure A f y w → (w ≡ supf u ) ∨ ( w << supf u ) -- different from order because y o< supf - fcy<sup {u} {w} u<z fc with SUP.x<sup (sup u<z) ⟪ subst (λ k → odef A k ) (sym &iso) (A∋fc {A} y f mf fc) + fcy<sup {u} {w} u<z fc with SUP.x<sup (sup (o<→≤ u<z)) ⟪ subst (λ k → odef A k ) (sym &iso) (A∋fc {A} y f mf fc) , ch-init (subst (λ k → FClosure A f y k) (sym &iso) fc ) ⟫ - ... | case1 eq = case1 (subst (λ k → k ≡ supf u ) &iso (trans (cong (&) eq) (sym (supf-is-sup u<z ) ) )) - ... | case2 lt = case2 (subst (λ k → * w < k ) (subst (λ k → k ≡ _ ) *iso (cong (*) (sym (supf-is-sup u<z ))) ) lt ) + ... | case1 eq = case1 (subst (λ k → k ≡ supf u ) &iso (trans (cong (&) eq) (sym (supf-is-sup (o<→≤ u<z) ) ) )) + ... | case2 lt = case2 (subst (λ k → * w < k ) (subst (λ k → k ≡ _ ) *iso (cong (*) (sym (supf-is-sup (o<→≤ u<z) ))) ) lt ) order : {b s z1 : Ordinal} → b o< z → supf s o< supf b → FClosure A f (supf s) z1 → (z1 ≡ supf b) ∨ (z1 << supf b) order {b} {s} {z1} b<z sf<sb fc = zc04 where zc01 : {z1 : Ordinal } → FClosure A f (supf s) z1 → UnionCF A f mf ay supf b ∋ * z1 @@ -334,18 +334,18 @@ zc03 : odef (UnionCF A f mf ay supf b) (supf s) zc03 with csupf (o<→≤ s<z) ... | ⟪ as , ch-init fc ⟫ = ⟪ as , ch-init fc ⟫ - ... | ⟪ as , ch-is-sup u u<x is-sup fc ⟫ = ⟪ as , ch-is-sup u (ordtrans u<x (osucc s<b)) is-sup fc ⟫ + ... | ⟪ as , ch-is-sup u u≤x is-sup fc ⟫ = ⟪ as , ch-is-sup u (ordtrans u≤x (osucc s<b)) is-sup fc ⟫ zc01 (fsuc x fc) = subst (λ k → odef (UnionCF A f mf ay supf b) k ) (sym &iso) zc04 where zc04 : odef (UnionCF A f mf ay supf b) (f x) zc04 with subst (λ k → odef (UnionCF A f mf ay supf b) k ) &iso (zc01 fc ) ... | ⟪ as , ch-init fc ⟫ = ⟪ proj2 (mf _ as) , ch-init (fsuc _ fc) ⟫ - ... | ⟪ as , ch-is-sup u u<x is-sup fc ⟫ = ⟪ proj2 (mf _ as) , ch-is-sup u u<x is-sup (fsuc _ fc) ⟫ - zc00 : ( * z1 ≡ SUP.sup (sup b<z )) ∨ ( * z1 < SUP.sup ( sup b<z ) ) - zc00 = SUP.x<sup (sup b<z) (zc01 fc ) + ... | ⟪ as , ch-is-sup u u≤x is-sup fc ⟫ = ⟪ proj2 (mf _ as) , ch-is-sup u u≤x is-sup (fsuc _ fc) ⟫ + zc00 : ( * z1 ≡ SUP.sup (sup (o<→≤ b<z) )) ∨ ( * z1 < SUP.sup ( sup (o<→≤ b<z) ) ) + zc00 = SUP.x<sup (sup (o<→≤ b<z)) (zc01 fc ) zc04 : (z1 ≡ supf b) ∨ (z1 << supf b) zc04 with zc00 - ... | case1 eq = case1 (subst₂ (λ j k → j ≡ k ) &iso (sym (supf-is-sup b<z ) ) (cong (&) eq) ) - ... | case2 lt = case2 (subst₂ (λ j k → j < k ) refl (subst₂ (λ j k → j ≡ k ) *iso refl (cong (*) (sym (supf-is-sup b<z ) ))) lt ) + ... | case1 eq = case1 (subst₂ (λ j k → j ≡ k ) &iso (sym (supf-is-sup (o<→≤ b<z) ) ) (cong (&) eq) ) + ... | case2 lt = case2 (subst₂ (λ j k → j < k ) refl (subst₂ (λ j k → j ≡ k ) *iso refl (cong (*) (sym (supf-is-sup (o<→≤ b<z) ) ))) lt ) record ZChain1 ( A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) @@ -368,7 +368,7 @@ chain-total A f mf {y} ay supf {xa} {xb} {a} {b} ca cb = ct-ind xa xb ca cb where ct-ind : (xa xb : Ordinal) → {a b : Ordinal} → UChain A f mf ay supf xa a → UChain A f mf ay supf xb b → Tri (* a < * b) (* a ≡ * b) (* b < * a) ct-ind xa xb {a} {b} (ch-init fca) (ch-init fcb) = fcn-cmp y f mf fca fcb - ct-ind xa xb {a} {b} (ch-init fca) (ch-is-sup ub u<x supb fcb) with ChainP.fcy<sup supb fca + ct-ind xa xb {a} {b} (ch-init fca) (ch-is-sup ub u≤x supb fcb) with ChainP.fcy<sup supb fca ... | case1 eq with s≤fc (supf ub) f mf fcb ... | case1 eq1 = tri≈ (λ lt → ⊥-elim (<-irr (case1 (sym ct00)) lt)) ct00 (λ lt → ⊥-elim (<-irr (case1 ct00) lt)) where ct00 : * a ≡ * b @@ -376,14 +376,14 @@ ... | case2 lt = tri< ct01 (λ eq → <-irr (case1 (sym eq)) ct01) (λ lt → <-irr (case2 ct01) lt) where ct01 : * a < * b ct01 = subst (λ k → * k < * b ) (sym eq) lt - ct-ind xa xb {a} {b} (ch-init fca) (ch-is-sup ub u<x supb fcb) | case2 lt = tri< ct01 (λ eq → <-irr (case1 (sym eq)) ct01) (λ lt → <-irr (case2 ct01) lt) where + ct-ind xa xb {a} {b} (ch-init fca) (ch-is-sup ub u≤x supb fcb) | case2 lt = tri< ct01 (λ eq → <-irr (case1 (sym eq)) ct01) (λ lt → <-irr (case2 ct01) lt) where ct00 : * a < * (supf ub) ct00 = lt ct01 : * a < * b ct01 with s≤fc (supf ub) f mf fcb ... | case1 eq = subst (λ k → * a < k ) eq ct00 ... | case2 lt = IsStrictPartialOrder.trans POO ct00 lt - ct-ind xa xb {a} {b} (ch-is-sup ua u<x supa fca) (ch-init fcb) with ChainP.fcy<sup supa fcb + ct-ind xa xb {a} {b} (ch-is-sup ua u≤x supa fca) (ch-init fcb) with ChainP.fcy<sup supa fcb ... | case1 eq with s≤fc (supf ua) f mf fca ... | case1 eq1 = tri≈ (λ lt → ⊥-elim (<-irr (case1 (sym ct00)) lt)) ct00 (λ lt → ⊥-elim (<-irr (case1 ct00) lt)) where ct00 : * a ≡ * b @@ -391,7 +391,7 @@ ... | case2 lt = tri> (λ lt → <-irr (case2 ct01) lt) (λ eq → <-irr (case1 eq) ct01) ct01 where ct01 : * b < * a ct01 = subst (λ k → * k < * a ) (sym eq) lt - ct-ind xa xb {a} {b} (ch-is-sup ua u<x supa fca) (ch-init fcb) | case2 lt = tri> (λ lt → <-irr (case2 ct01) lt) (λ eq → <-irr (case1 eq) ct01) ct01 where + ct-ind xa xb {a} {b} (ch-is-sup ua u≤x supa fca) (ch-init fcb) | case2 lt = tri> (λ lt → <-irr (case2 ct01) lt) (λ eq → <-irr (case1 eq) ct01) ct01 where ct00 : * b < * (supf ua) ct00 = lt ct01 : * b < * a @@ -513,9 +513,9 @@ * a < * b → odef (UnionCF A f mf ay (ZChain.supf zc) x) b is-max-hp x {a} {b} ua b<x ab has-prev a<b with HasPrev.ay has-prev ... | ⟪ ab0 , ch-init fc ⟫ = ⟪ ab , ch-init ( subst (λ k → FClosure A f y k) (sym (HasPrev.x=fy has-prev)) (fsuc _ fc )) ⟫ - ... | ⟪ ab0 , ch-is-sup u u<x is-sup fc ⟫ = ⟪ ab , + ... | ⟪ ab0 , ch-is-sup u u≤x is-sup fc ⟫ = ⟪ ab , subst (λ k → UChain A f mf ay (ZChain.supf zc) x k ) - (sym (HasPrev.x=fy has-prev)) ( ch-is-sup u u<x is-sup (fsuc _ fc)) ⟫ + (sym (HasPrev.x=fy has-prev)) ( ch-is-sup u u≤x is-sup (fsuc _ fc)) ⟫ zc1 : (x : Ordinal) → ((y₁ : Ordinal) → y₁ o< x → ZChain1 A f mf ay zc y₁) → ZChain1 A f mf ay zc x zc1 x prev with Oprev-p x ... | yes op = record { is-max = is-max } where @@ -642,7 +642,7 @@ ysup f mf {y} ay = supP (uchain f mf ay) (λ lt → A∋fc y f mf lt) (utotal f mf ay) inititalChain : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) {y : Ordinal} (ay : odef A y) → ZChain A f mf ay o∅ - inititalChain f mf {y} ay = record { supf = isupf ; chain⊆A = λ lt → proj1 lt ; chain∋init = cy ; sup = sup ; supf-is-sup = λ b<0 → ⊥-elim (¬x<0 b<0) + inititalChain f mf {y} ay = record { supf = isupf ; chain⊆A = λ lt → proj1 lt ; chain∋init = cy ; sup = ? ; supf-is-sup = ? ; initial = isy ; f-next = inext ; f-total = itotal ; sup=u = λ _ b<0 → ⊥-elim (¬x<0 b<0) ; supf-mono = mono ; csupf = csupf } where spi = & (SUP.sup (ysup f mf ay)) isupf : Ordinal → Ordinal @@ -658,11 +658,11 @@ isy : {z : Ordinal } → odef (UnionCF A f mf ay isupf o∅) z → * y ≤ * z isy {z} ⟪ az , uz ⟫ with uz ... | ch-init fc = s≤fc y f mf fc - ... | ch-is-sup u u<x is-sup fc = ≤-ftrans (subst (λ k → * y ≤ k) (sym *iso) y<sup) (s≤fc (& (SUP.sup (ysup f mf ay))) f mf fc ) + ... | ch-is-sup u u≤x is-sup fc = ≤-ftrans (subst (λ k → * y ≤ k) (sym *iso) y<sup) (s≤fc (& (SUP.sup (ysup f mf ay))) f mf fc ) inext : {a : Ordinal} → odef (UnionCF A f mf ay isupf o∅) a → odef (UnionCF A f mf ay isupf o∅) (f a) inext {a} ua with (proj2 ua) ... | ch-init fc = ⟪ proj2 (mf _ (proj1 ua)) , ch-init (fsuc _ fc ) ⟫ - ... | ch-is-sup u u<x is-sup fc = ⟪ proj2 (mf _ (proj1 ua)) , ch-is-sup u u<x is-sup (fsuc _ fc) ⟫ + ... | ch-is-sup u u≤x is-sup fc = ⟪ proj2 (mf _ (proj1 ua)) , ch-is-sup u u≤x is-sup (fsuc _ fc) ⟫ itotal : IsTotalOrderSet (UnionCF A f mf ay isupf o∅) itotal {a} {b} ca cb = subst₂ (λ j k → Tri (j < k) (j ≡ k) (k < j)) *iso *iso uz01 where uz01 : Tri (* (& a) < * (& b)) (* (& a) ≡ * (& b)) (* (& b) < * (& a) ) @@ -713,11 +713,11 @@ pchain⊆A {y} ny = proj1 ny pnext : {a : Ordinal} → odef pchain a → odef pchain (f a) pnext {a} ⟪ aa , ch-init fc ⟫ = ⟪ proj2 (mf a aa) , ch-init (fsuc _ fc) ⟫ - pnext {a} ⟪ aa , ch-is-sup u u<x is-sup fc ⟫ = ⟪ proj2 (mf a aa) , ch-is-sup u ? is-sup (fsuc _ fc ) ⟫ + pnext {a} ⟪ aa , ch-is-sup u u≤x is-sup fc ⟫ = ⟪ proj2 (mf a aa) , ch-is-sup u ? is-sup (fsuc _ fc ) ⟫ pinit : {y₁ : Ordinal} → odef pchain y₁ → * y ≤ * y₁ pinit {a} ⟪ aa , ua ⟫ with ua ... | ch-init fc = s≤fc y f mf fc - ... | ch-is-sup u u<x is-sup fc = ≤-ftrans (<=to≤ zc7) (s≤fc _ f mf fc) where + ... | ch-is-sup u u≤x is-sup fc = ≤-ftrans (<=to≤ zc7) (s≤fc _ f mf fc) where zc7 : y <= (ZChain.supf zc) u zc7 = ChainP.fcy<sup is-sup (init ay refl) pcy : odef pchain y @@ -727,25 +727,50 @@ -- if previous chain satisfies maximality, we caan reuse it -- - -- (¬ odef (UnionCF A f mf ay supf0 z) (supf0 px)) ∨ (supf0 px is sup of UnionCF px ) + -- supf0 px is sup of UnionCF px , supf0 x is sup of UnionCF x no-extension : ZChain A f mf ay x - no-extension = record { supf = supf0 ; supf-mono = ZChain.supf-mono zc ; sup = sup - ; initial = pinit ; chain∋init = pcy ; sup=u = {!!} ; supf-is-sup = ? ; csupf = ? - ; chain⊆A = pchain⊆A ; f-next = pnext ; f-total = ptotal } where - sup : {z : Ordinal} → z o< x → SUP A (UnionCF A f mf ay supf0 z) - sup {z} z<x with trio< z px - ... | tri< a ¬b ¬c = ZChain.sup zc a - ... | tri> ¬a ¬b c = ⊥-elim (¬p<x<op ⟪ c , subst (λ k → z o< k) (sym (Oprev.oprev=x op)) z<x ⟫ ) -- px < z < x - ... | tri≈ ¬a b ¬c = record { sup = * (supf0 px) ; A∋maximal = subst (λ k → odef A k ) (sym &iso) (proj1 zc8) ; x<sup = x<sup } where - zc9 : SUP A (UnionCF A f mf ay supf0 x) - zc9 = supP pchain pchain⊆A ptotal - zc8 : odef (UnionCF A f mf ay supf0 z) (supf0 px) - zc8 = subst (λ k → odef (UnionCF A f mf ay supf0 z) k ) (cong supf0 b) (ZChain.csupf zc (subst (λ k → z o≤ k) b o≤-refl )) - x<sup' : {w : HOD} → UnionCF A f mf ay supf0 x ∋ w → (w ≡ (SUP.sup zc9) ) ∨ (w < (SUP.sup zc9) ) - x<sup' {q} uw = SUP.x<sup zc9 uw - x<sup : {w : HOD} → UnionCF A f mf ay supf0 z ∋ w → (w ≡ * (supf0 px) ) ∨ (w < * (supf0 px) ) - x<sup {w} ⟪ aw , ch-init fc ⟫ = ? - x<sup {w} ⟪ aw , ch-is-sup u u≤z is-sup fc ⟫ = ? + no-extension = record { supf = supf1 ; supf-mono = ? ; sup = sup + ; initial = ? ; chain∋init = ? ; sup=u = {!!} ; supf-is-sup = ? ; csupf = ? + ; chain⊆A = ? ; f-next = ? ; f-total = ? } where + sup1 : SUP A (UnionCF A f mf ay supf0 x) + sup1 = supP pchain pchain⊆A ptotal + sp1 = & (SUP.sup sup1 ) + supf1 : Ordinal → Ordinal + supf1 z with trio< z px + ... | tri< a ¬b ¬c = ZChain.supf zc z + ... | tri≈ ¬a b ¬c = ZChain.supf zc z + ... | tri> ¬a ¬b c = sp1 + UnionCF⊆ : UnionCF A f mf ay supf1 x ⊆' UnionCF A f mf ay supf0 x + UnionCF⊆ ⟪ as , ch-init fc ⟫ = UnionCF⊆ ⟪ as , ch-init fc ⟫ + UnionCF⊆ ⟪ as , ch-is-sup u {z} u≤x record { fcy<sup = f1 ; order = o1 } fc ⟫ with trio< u px + ... | tri< a ¬b ¬c = ⟪ as , ch-is-sup u {z} u≤x record { fcy<sup = f1 ; order = order0 } fc ⟫ where + order1 : {s z1 : Ordinal} → supf1 s o< supf0 u → FClosure A f (supf1 s) z1 + → (z1 ≡ supf0 u) ∨ (z1 << (supf0 u)) + order1 {s} {z1} = o1 {s} {z1} + order0 : {s z1 : Ordinal} → supf0 s o< supf0 u → FClosure A f (supf0 s) z1 + → (z1 ≡ supf0 u) ∨ (z1 << supf0 u) + order0 {s} {z1} with trio< s px + ... | tri< a ¬b ¬c = o1 {s} {z1} + ... | tri≈ ¬a b ¬c = o1 {s} {z1} + ... | tri> ¬a ¬b c = ? + ... | tri≈ ¬a b ¬c = ⟪ as , ch-is-sup u {z} u≤x record { fcy<sup = f1 ; order = ? } fc ⟫ + ... | tri> ¬a ¬b c = ⟪ as , ch-is-sup u {z} u≤x record { fcy<sup = fcy<sup ; order = order } fc0 ⟫ where + -- px o< u , u o< osuc x → u ≡ x + -- supf0 x ≡ sp1 ≡ x + -- u≤x → supf0 u < x + fc1 : FClosure A f sp1 z + fc1 = fc + fc0 : FClosure A f (supf0 u) z + fc0 = ? + fcy<sup : {z : Ordinal} → FClosure A f y z → (z ≡ supf0 u) ∨ (z << supf0 u) + fcy<sup {z} fc = ? + order : {s z1 : Ordinal} → supf0 s o< supf0 u → FClosure A f (supf0 s) z1 → (z1 ≡ supf0 u) ∨ (z1 << supf0 u) + order = ? + sup : {z : Ordinal} → z o≤ x → SUP A (UnionCF A f mf ay supf1 z) + sup {z} z≤x with trio< z px + ... | tri< a ¬b ¬c = ? -- ZChain.sup zc (o<→≤ a) + ... | tri≈ ¬a b ¬c = ? -- ZChain.sup zc (o≤-refl0 b) + ... | tri> ¬a ¬b c = ? -- sp1 zc4 : ZChain A f mf ay x zc4 with ODC.∋-p O A (* px) @@ -844,11 +869,11 @@ pchain⊆A {y} ny = proj1 ny pnext : {a : Ordinal} → odef pchain a → odef pchain (f a) pnext {a} ⟪ aa , ch-init fc ⟫ = ⟪ proj2 ( mf a aa ) , ch-init (fsuc _ fc) ⟫ - pnext {a} ⟪ aa , ch-is-sup u u<x is-sup fc ⟫ = ⟪ proj2 ( mf a aa ) , ch-is-sup u ? is-sup (fsuc _ fc) ⟫ + pnext {a} ⟪ aa , ch-is-sup u u≤x is-sup fc ⟫ = ⟪ proj2 ( mf a aa ) , ch-is-sup u ? is-sup (fsuc _ fc) ⟫ pinit : {y₁ : Ordinal} → odef pchain y₁ → * y ≤ * y₁ pinit {a} ⟪ aa , ua ⟫ with ua ... | ch-init fc = s≤fc y f mf fc - ... | ch-is-sup u u<x is-sup fc = ≤-ftrans (<=to≤ zc7) (s≤fc _ f mf fc) where + ... | ch-is-sup u u≤x is-sup fc = ≤-ftrans (<=to≤ zc7) (s≤fc _ f mf fc) where zc7 : y <= psupf _ zc7 = ChainP.fcy<sup is-sup (init ay refl) pcy : odef pchain y @@ -864,7 +889,7 @@ * a < * b → odef (UnionCF A f mf ay supf x) b is-max-hp supf x {a} {b} ua b<x ab has-prev a<b with HasPrev.ay has-prev ... | ⟪ ab0 , ch-init fc ⟫ = ⟪ ab , ch-init ( subst (λ k → FClosure A f y k) (sym (HasPrev.x=fy has-prev)) (fsuc _ fc )) ⟫ - ... | ⟪ ab0 , ch-is-sup u u<x is-sup fc ⟫ = ⟪ ab , + ... | ⟪ ab0 , ch-is-sup u u≤x is-sup fc ⟫ = ⟪ ab , subst (λ k → UChain A f mf ay supf x k ) (sym (HasPrev.x=fy has-prev)) ( ch-is-sup u ? is-sup (fsuc _ fc)) ⟫