Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1179:f4cd937759fc
...
author | kono |
---|---|
date | Thu, 23 Feb 2023 12:48:00 +0800 |
parents | 7bd348551d37 |
children | 8e04e3cad0b5 |
files | src/Topology.agda |
diffstat | 1 files changed, 12 insertions(+), 18 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Topology.agda Thu Feb 23 09:58:11 2023 +0800 +++ b/src/Topology.agda Thu Feb 23 12:48:00 2023 +0800 @@ -277,22 +277,6 @@ → odef L (limit CX fip) L∋limit {X} CX fip {x} xx = cs⊆L top (subst (λ k → odef (CS top) k) (sym &iso) (CX xx)) (is-limit CX fip xx) -fipx : {L : HOD} (top : Topology L) → {X : Ordinal } → * X ⊆ CS top - → ( { C : Ordinal } { x : Ordinal } → * C ⊆ * X → Subbase (* C) x → o∅ o< x ) → Ordinal -fipx {L} top {X} X⊆CS fip with trio< X o∅ -... | tri< a ¬b ¬c = ⊥-elim ( ¬x<0 a ) -... | tri≈ ¬a b ¬c = o∅ -... | tri> ¬a ¬b c = & (ODC.minimal O (* fip00) (0<P→ne (subst (λ k → o∅ o< k) (sym &iso) ( fip (λ x → x ) (gi ? ) )))) where - fip00 : ? - fip00 = & (ODC.minimal O (* X) (0<P→ne (subst (λ k → o∅ o< k) (sym &iso) c ) )) - -fipX∋x : {L : HOD} (top : Topology L) → {X : Ordinal } → (X⊆CS : * X ⊆ CS top ) - → (fip : { C : Ordinal } { x : Ordinal } → * C ⊆ * X → Subbase (* C) x → o∅ o< x ) → odef (* X) (fipx top X⊆CS fip) -fipX∋x {L} top {X} X⊆CS fip with trio< X o∅ -... | tri< a ¬b ¬c = ⊥-elim ( ¬x<0 a ) -... | tri≈ ¬a b ¬c = ? -... | tri> ¬a ¬b c = ? -- fip (λ x → x) (gi ?) - -- Compact data Finite-∪ (S : HOD) : Ordinal → Set n where @@ -482,10 +466,20 @@ -- Intersection : (X : Ordinal ) → o∅ o< X → HOD -- ∩ X Intersection X 0<X = record { od = record { def = λ x → {y : Ordinal} → odef (* X) y → odef (* y) x } ; odmax = osuc X ; <odmax = i00 } where + i01 : HOD + i01 = ODC.minimal O (* X) (0<P→ne (subst (λ k → o∅ o< k) (sym &iso) 0<X ) ) + i02 : odef (* X) (& i01) + i02 = ODC.x∋minimal O (* X) (0<P→ne (subst (λ k → o∅ o< k) (sym &iso) 0<X ) ) i00 : {x : Ordinal} → ({y : Ordinal} → odef (* X) y → odef (* y) x) → x o< osuc X i00 {x} xy = begin - x ≤⟨ ? ⟩ - X ∎ where open o≤-Reasoning O + x ≡⟨ sym &iso ⟩ + & (* x) <⟨ c<→o< (subst₂ (λ j k → odef j k ) *iso (sym &iso) i03) ⟩ + & i01 <⟨ c<→o< i02 ⟩ + & (* X) ≡⟨ &iso ⟩ + X ∎ where + open o≤-Reasoning O + i03 : odef (* (& i01)) x + i03 = xy i02 has-intersection : {X : Ordinal} (CX : * X ⊆ CS top) (fip : {C x : Ordinal} → * C ⊆ * X → Subbase (* C) x → o∅ o< x) → ¬ ( Intersection X ? =h= od∅ ) has-intersection {X} CX fip i=0 = ? where