Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 583:f545b97ce7a8
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 07 Jun 2022 12:59:08 +0900 |
parents | 48e9d2e61bbe |
children | b684030c8a28 4dbaa071d695 |
files | src/zorn.agda |
diffstat | 1 files changed, 21 insertions(+), 5 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Tue Jun 07 02:18:25 2022 +0900 +++ b/src/zorn.agda Tue Jun 07 12:59:08 2022 +0900 @@ -248,16 +248,32 @@ is-max : {a b : Ordinal } → (ca : odef chain a ) → b o< osuc z → (ab : odef A b) → HasPrev A chain ab f ∨ IsSup A chain ab → * a < * b → odef chain b - fc∨sup : {a : Ordinal } → a o< osuc z → ( ca : odef chain a ) → HasPrev A chain ( chain⊆A ca) f ∨ IsSup A chain ( chain⊆A ca) + fc∨sup : {a : Ordinal } → ( ca : odef chain a ) → HasPrev A chain ( chain⊆A ca) f ∨ IsSup A chain ( chain⊆A ca) Uz-mono : ( A : HOD ) (x : Ordinal) ( f : Ordinal → Ordinal ) → ( a b : Ordinal ) → a o< b → (za : ZChain A x f a) (zb : ZChain A x f b) → ZChain.chain za ⊆' ZChain.chain zb -Uz-mono A x f a b a<b za zb {i} zai = TransFinite0 (ind i) a where +Uz-mono A x f a b = TransFinite {λ a → a o< b → (za : ZChain A x f a) (zb : ZChain A x f b) + → ZChain.chain za ⊆' ZChain.chain zb } ind a where open ZChain - ind : (i a : Ordinal) → ((y : Ordinal) → y o< a → odef (ZChain.chain zb) i) → odef (ZChain.chain zb) i - ind = ? - + ind : (a : Ordinal) + → ((y : Ordinal) → y o< a → y o< b → (za : ZChain A x f y) (zb : ZChain A x f b) → chain za ⊆' chain zb) + → a o< b → (za : ZChain A x f a) (zb : ZChain A x f b) → chain za ⊆' chain zb + ind a prev a<b za zb {i} zai with f-total za (subst (λ k → odef (chain za) k) (sym &iso) zai) + (subst (λ k → odef (chain za) k) (sym &iso) (chain∋x za) ) + ... | tri< i<x ¬b ¬c with initial za zai + ... | case1 i=x = ⊥-elim ( ¬b (sym i=x)) + ... | case2 x<i = ⊥-elim ( ¬c x<i) + ind a prev a<b za zb {i} zai | tri≈ ¬a b ¬c = subst (λ k → odef (chain zb) k ) (sym (*≡*→≡ b))(chain∋x zb) + ind a prev a<b za zb {i} zai | tri> ¬a ¬b x<i = um i zai where + um : (i : Ordinal ) → odef (chain za) i → odef (chain zb) i + um zai i with fc∨sup za zai + ... | case1 fc = {!!} + ... | case2 sup = {!!} + um01 : i o< osuc b + um01 = {!!} + um02 : {!!} + um02 = is-max zb (chain∋x zb) {!!} (chain⊆A za zai) {!!} x<i record Maximal ( A : HOD ) : Set (Level.suc n) where field